Citation: | Yang Weilin, Xiang Wu, Wang Yiliu, Liu Yu, 2018. Dissolution of Fe-Organic Associations by Peatland-Derived Phenolic Acids and Its Environmental Significance. Earth Science, 43(11): 4056-4065. doi: 10.3799/dqkx.2018.289 |
Andjelkovi, M., Camp, J.V., Meulenaer, B.D., et al., 2006.Iron-Chelation Properties of Phenolic Acids Bearing Catechol and Galloyl Groups.Food Chemistry, 98(1):23-31. doi: 10.1016/j.foodchem.2005.05.044
|
Boudot, J.P., Bel Hadj Brahim, A., Steiman, R., et al., 1989.Biodegradation of Synthetic Organo-Metallic Complexes of Iron and Aluminium with Selected Metal to Carbon Ratios.Soil Biology and Biochemistry, 21(7):961-966. doi: 10.1016/0038-0717(89)90088-6
|
Chen, C.M., Dynes, J.J., Wang, J., et al., 2014.Properties of Fe-Organic Matter Associations via Coprecipitation versus Adsorption.Environmental Science & Technology, 48(23):13751-13759. http://www.ncbi.nlm.nih.gov/pubmed/25350793
|
Chin, Y., Traina, S.J., Swank, C.R., et al., 1998.Abundance and Properties of Dissolved Organic Matter in Pore Waters of a Freshwater Wetland.Limnology and Oceanography, 43(6):1287-1296. doi: 10.4319/lo.1998.43.6.1287
|
Colombo, C., Palumbo, G., He, J.Z., et al., 2014.Review on Iron Availability in Soil:Interaction of Fe Minerals, Plants, and Microbes.Journal of Soils & Sediments, 14(3):538-548. http://jxb.oxfordjournals.org/external-ref?access_num=10.1007/s11368-013-0814-z&link_type=DOI
|
Davranche, M., Dia, A., Fakih, M., et al, 2013.Organic Matter Control on the Reactivity of Fe(Ⅲ)-Oxyhydroxides and Associated as in Wetland Soils:A Kinetic Modeling Study.Chemical Geology, 335(1):24-35. http://www.sciencedirect.com/science/article/pii/S0009254112005396
|
Eitel, E.M., Taillefert, M., 2017.Mechanistic Investigation of Fe(Ⅲ) Oxide Reduction by Low Molecular Weight Organic Sulfur Species.Geochimica et Cosmochimica Acta, 215:173-188. doi: 10.1016/j.gca.2017.07.016
|
Elfarissi, F., Pefferkorn, E., 2000.Kaolinite/Humic Acid Interaction in the Presence of Aluminium Ion.Colloids and Surfaces A Physicochemical and Engineering Aspects, 168(1):1-12. http://www.sciencedirect.com/science/article/pii/S0927775799002927
|
Eusterhues, K., Hädrich, A., Neidhardt, J., et al., 2014.Reduction of Ferrihydrite with Adsorbed and Coprecipitated Organic Matter:Microbial Reduction by Geobacter Bremensis vs.Abiotic Reduction by Na-Dithionite.Biogeosciences Discussions, 11(4):6039-6067. http://adsabs.harvard.edu/abs/2014BGeo...11.4953E
|
Fahmi, A., Radjagukguk, B., Purwanto, B.H., et al., 2010.The Role of Peat Layers on Iron Dynamics in Peatlands.Jurnal Tanah Tropika, 15(3):195-201. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_6ca2d3cf713ff2f5e88c77fa7b4a9ab8
|
Fu, X.F., 2017.Influence of Wetland Utilization on Interactions between Iron and Carbon in Sanjiang Plain and the Environmental Significances (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705006.htm
|
Gorham, E., 1991.Northern Peatlands:Role in the Carbon Cycle and Probable Responses to Climatic Warming.Ecological Applications, 1(2):182-195. doi: 10.2307/1941811
|
Graham, T.L., 1991.Flavonoid and Isoflavonoid Distribution in Developing Soybean Seedling Tissues and in Seed and Root Exudates.Plant Physiology, 95(2):594-603. doi: 10.1104/pp.95.2.594
|
Gu, B., Schmitt, J., Chen, Z., et al., 1994.Adsorption and Desorption of Natural Organic Matter on Iron Oxide:Mechanisms and Models.Environmental Science & Technology, 28(1):38. http://www.ncbi.nlm.nih.gov/pubmed/22175831
|
Harwood, C.S., Parales, R.E., 1996.The Beta-Ketoadipate Pathway and the Biology of Self-Identity.Annual Review of Microbiology, 50(1):553-590. doi: 10.1146/annurev.micro.50.1.553
|
Krachler, R., Krachler, R.F., Vond, K.F., et al., 2010.Relevance of Peat-Draining Rivers for the Riverine Input of Dissolved Iron into the Ocean.Science of the Total Environment, 408(11):2402-2408. doi: 10.1016/j.scitotenv.2010.02.018
|
Krumina, L., Lyngsie, G., Tunlid, A., et al., 2017.Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles:Iron Reduction versus Surface Catalysis.Environmental Science & Technology, 51(16):9053-9061. http://www.ncbi.nlm.nih.gov/pubmed/28691796/
|
LaKind, J.S., Stone, A.T., 1989.Reductive Dissolution of Goethite by Phenolic Reductants.Geochimica et Cosmochimica Acta, 53(5):961-971. doi: 10.1016/0016-7037(89)90202-0
|
Larsen, O, Postma, D., 2001.Kinetics of Reductive Bulk Dissolution of Lepidocrocite, Ferrihydrite, and Goethite.Geochimica et Cosmochimica Acta, 65(9):1367-1379. doi: 10.1016/S0016-7037(00)00623-2
|
Larsen, O., Postma, D., Jakobsen, R., 2006.The Reactivity of Iron Oxides towards Reductive Dissolution with Ascorbic Acid in a Shallow Sandy Aquifer (Rømø, Denmark).Geochimica et Cosmochimica Acta, 70(19):4827-4835. doi: 10.1016/j.gca.2006.03.027
|
Lovley, D., Philips, E.J.P., 1988.Manganese Inhibition of Microbial Iron Reduction in Anaerobic Sediments.Geomicrobiology Journal, 6(3-4):145-155. doi: 10.1080/01490458809377834
|
Lovley, D.R., 2004.Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) Reduction.Advances in Microbial Physiology, 49(2):219. http://pubmedcentralcanada.ca/pmcc/articles/PMC372814/
|
Lu, Z.J., Deng, Y.M., Du, Y., et al., 2017.EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain.Earth Science, 42(5):771-782 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705012.htm
|
Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990.Iron in Antarctic Waters.Nature, 345(6271):156-158. doi: 10.1038/345156a0
|
Mercader, R.C., Silva, A.C., Montes, M.L., et al., 2014.Chemical Fate of Iron in a Peatland Developing in the Southern Espinhaço Chain, Brazil.Hyperfine Interactions, 226(1-3):509-516. doi: 10.1007/s10751-013-0975-6
|
Mikutta, R., Mikutta, C., Kalbitz, K., et al., 2007.Biodegradation of Forest Floor Organic Matter Bound to Minerals via Different Binding Mechanisms.Geochimica et Cosmochimica Acta, 71(10):2569-2590. doi: 10.1016/j.gca.2007.03.002
|
Moran, J.F., Klucas, R.V., Grayer, R.J., et al., 1997.Complexes of Iron with Phenolic Compounds from Soybean Nodules and Other Legume Tissues:Prooxidant and Antioxidant Properties.Free Radical Biology and Medicine, 22(5):861-870. doi: 10.1016/S0891-5849(96)00426-1
|
Nevin, K.P., Lovley, D.R., 2002.Mechanisms for Accessing Insoluble Fe(Ⅲ) Oxide during Dissimilatory Fe(Ⅲ) Reduction by Geothrix Fermentans.Applied and Environmental Microbiology, 68(5):2294-2299. doi: 10.1128/AEM.68.5.2294-2299.2002
|
Parida, K.M., Das, N.N., 1996.Reductive Dissolution of Hematite in Hydrochloric Acid Medium by Some Inorganic and Organic Reductants:A Comparative Study.Indian Journal of Engineering & Materials Sciences, 3(6):243-247. doi: 10.1021/la960203u
|
Prietzel, J., Thieme, A.J., Eusterhues, B.K., et al., 2007.Iron Speciation in Soils and Soil Aggregates by Synchrotron-Based X-Ray Microspectroscopy (XANES, μ-XANES).European Journal of Soil Science, 58(5):1027-1041. doi: 10.1111/ejs.2007.58.issue-5
|
Reddy, K.R., Delaune, R.D., et al., 2008.Biogeochemistry of Wetlands:Science and Applications.Soil Science Society of America Journal, 73(2):1779. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_704a6b4451440dc6bf4b36b41cbd8bc5
|
Rue, E.L., Bruland, K.W., 1995.Complexation of Iron (Ⅲ) by Natural Organic Ligands in the Central North Pacific as Determined by a New Competitive Ligand Equilibration/Adsorptive Cathodic Stripping Voltammetric Method.Marine Chemistry, 50(1-4):117-138. doi: 10.1016/0304-4203(95)00031-L
|
Schwertmann, H.C.U., Cornell, R.M., 2000.Iron Oxides in the Laboratory:Preparation and Characterization.Clay Minerals, 27(3):393. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_cdae05dc4e98ca279bfe7ddde622081d
|
Shi, Z., Zachara, J.M., Wang, Z., et al., 2013.Reductive Dissolution of Goethite and Hematite by Reduced Flavins.Geochimica et Cosmochimica Acta, 121(6):139-154. http://www.sciencedirect.com/science/article/pii/S0016703713003268
|
Shimizu, M., Zhou, J., Schröder, C., et al., 2013.Dissimilatory Reduction and Transformation of Ferrihydrite-Humic Acid Coprecipitates.Environmental Science & Technology, 47(23):13375-13384. http://europepmc.org/abstract/med/24219167
|
Stone, A.T., 1987.Adsorption of Organic Reductants and Subsequent Electron Transfer on Metal Oxide Surfaces.Symposium A:Quarterly Journal in Modern Foreign Literatures, 11:446-461. doi: 10.1021/bk-1987-0323.ch021
|
Stumm, W., Sulzberger, B., 1992.The Cycling of Iron in Natural Environments:Considerations Based on Laboratory Studies of Heterogeneous Redox Processes.Geochimica et Cosmochimica Acta, 56(8):3233-3257. doi: 10.1016/0016-7037(92)90301-X
|
Suter, D., Banwart, S., Stumm, W., 1991.Dissolution of Hydrous Iron(Ⅲ) Oxides by Reductive Mechanisms.Langmuir, 7(4):809-813. doi: 10.1021/la00052a033
|
Taillefert, M, Beckler, J S, Carey, E, et al., 2007.Shewanella Putrefaciens Produces an Fe(Ⅲ)-Solubilizing Organic Ligand during Anaerobic Respiration on Insoluble Fe(Ⅲ) Oxides.Journal of Inorganic Biochemistry, 101(11):1760-1767. http://www.sciencedirect.com/science/article/pii/S0162013407001997
|
Tufano, K.J., Fendorf, S., 2008.Confounding Impacts of Iron Reduction on Arsenic Retention.Environmental Science & Technology, 42(13):4777-4783. http://www.ncbi.nlm.nih.gov/pubmed/18678005
|
Vempati, R.K., Loeppert, R.H., 1986, Synthetic Ferrihydrite as a Potential Iron Amendment in Calcareous Soils.Journal of Plant Nutrition, 9(3-7):1039-1052. doi: 10.1080/01904168609363504
|
Wan, X., Xiang, W., Yu, S., et al., 2013.Determination of Phenols from Peatland Water by Solid Phase Extraction and High Performance Liquid Chromatography.Chinese Journal of Analysis Laboratory, 32(10):15-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-FXSY201310006.htm
|
Wang, Y., Xiang, W., Yang, W., et al., 2018.Photo-Stability of Iron-Phenolic Complexes Derived from Peatland Upon Irradiation in Waters under Simulated Sunlight.Chemical Geology, 485:14-23. doi: 10.1016/j.chemgeo.2018.03.016
|
Wen, Q.X., 1984.Method of Soil Organic Matter Research.China Agriculture Press, Beijing (in Chinese).
|
Wu, Y., Xiang, W., Fu, X.F., et al., 2016.Effect of Phenolic Acids Derived from Peatland on Surface Behavior of Iron and Its Significance:A Case Study in Hani Peatland.Earth Science, 41(4):683-691 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201604014.htm
|
Xu, S.L., Duan, W.H., Liu, S.J., et al., 1986.A Study on the Ferrous Ion Oxidized by the Air in Aqueous Solution.Journal of Yunnan University, 8(2):191-197 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YNDZ198602015.htm
|
Yu, Z., Loisel, J., Brosseau, D.P., et al., 2010.Global Peatland Dynamics since the Last Glacial Maximum.Geophysical Research Letters, 37(13):69-73. http://www.cabdirect.org/abstracts/20103270680.html
|
傅先芳, 2017.湿地开发对三江平原沼泽分布区铁碳相互作用的影响及其环境意义(硕士学位论文).武汉: 中国地质大学.
|
高杰, 郑天亮, 邓娅敏, 等, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://earth-science.net/WebPage/Article.aspx?id=3576
|
鲁宗杰, 邓娅敏, 杜尧, 等, 2017.江汉平原高砷地下水中DOM三维荧光特征及其指示意义.地球科学, 42(5):771-782. http://earth-science.net/WebPage/Article.aspx?id=3571
|
万翔, 向武, 于桑, 等, 2013.固相萃取-高效液相色谱法同时测定泥炭沼泽源水体中9种酚类物质.分析试验室, 32(10):15-19. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FXSY201310006&dbname=CJFD&dbcode=CJFQ
|
文启孝, 1984.土壤有机质研究法.北京:农业出版社.
|
邬钰, 向武, 傅先芳, 等, 2016.东北哈尼泥炭沼泽中酚酸的组成、酚铁相互作用及其环境意义.地球科学, 41(4):683-691. http://d.old.wanfangdata.com.cn/Periodical/dqkx201604014
|
徐绍龄, 段维恒, 刘时杰, 等, 1986.空气氧化水溶液中亚铁离子的研究——1.溶液pH值对氧化速率的影响及铁的水解产物破坏水合亚铁离子"遮蔽效应"的催化机理.云南大学学报, 8(2):191-197. http://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ198602015.htm
|