• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 11
    Nov.  2018
    Turn off MathJax
    Article Contents
    Yang Weilin, Xiang Wu, Wang Yiliu, Liu Yu, 2018. Dissolution of Fe-Organic Associations by Peatland-Derived Phenolic Acids and Its Environmental Significance. Earth Science, 43(11): 4056-4065. doi: 10.3799/dqkx.2018.289
    Citation: Yang Weilin, Xiang Wu, Wang Yiliu, Liu Yu, 2018. Dissolution of Fe-Organic Associations by Peatland-Derived Phenolic Acids and Its Environmental Significance. Earth Science, 43(11): 4056-4065. doi: 10.3799/dqkx.2018.289

    Dissolution of Fe-Organic Associations by Peatland-Derived Phenolic Acids and Its Environmental Significance

    doi: 10.3799/dqkx.2018.289
    • Received Date: 2018-08-12
    • Publish Date: 2018-11-15
    • Peatland is a type of wetland with global significance, and the study of the dissolution of phenolic-iron complexes by peat derived phenolic acids helps us to understand better the iron-carbon coupled geochemical cycle. In this study, humic substances were extracted from Jingchuan peatland soils and hematite, goethite, ferrihydrite and Fe-organic associations were synthesized. After that, a series of dissolution experiments were performed with three representative peatland-derived phenolic acids, including gallic acid, caffeic acid and protocatechuic acid. Results show that the amorphous ferrihydrite and the newly synthesized humic-Fe have weaker dissolution capacities, but the well-crystallized goethite, hematite and the humic-Fe after aging have better dissolution capacities, meanwhile the humic-Fe could be more stable in the phenolic acids solution than the pure iron oxides. It is confirmed that the organic iron makes up higher proportion in peatland soil, while the crystallized iron oxides make up higher proportion in mineral soils. The interaction between iron and carbon in peatland is complicated, where iron could be exported to aquatic ecosystem such as the ocean by complexing with iron, and organic carbon could also be preserved by forming Fe-organic complexes, thus affecting the global iron-carbon coupled geochemical cycle.

       

    • loading
    • Andjelkovi, M., Camp, J.V., Meulenaer, B.D., et al., 2006.Iron-Chelation Properties of Phenolic Acids Bearing Catechol and Galloyl Groups.Food Chemistry, 98(1):23-31. doi: 10.1016/j.foodchem.2005.05.044
      Boudot, J.P., Bel Hadj Brahim, A., Steiman, R., et al., 1989.Biodegradation of Synthetic Organo-Metallic Complexes of Iron and Aluminium with Selected Metal to Carbon Ratios.Soil Biology and Biochemistry, 21(7):961-966. doi: 10.1016/0038-0717(89)90088-6
      Chen, C.M., Dynes, J.J., Wang, J., et al., 2014.Properties of Fe-Organic Matter Associations via Coprecipitation versus Adsorption.Environmental Science & Technology, 48(23):13751-13759. http://www.ncbi.nlm.nih.gov/pubmed/25350793
      Chin, Y., Traina, S.J., Swank, C.R., et al., 1998.Abundance and Properties of Dissolved Organic Matter in Pore Waters of a Freshwater Wetland.Limnology and Oceanography, 43(6):1287-1296. doi: 10.4319/lo.1998.43.6.1287
      Colombo, C., Palumbo, G., He, J.Z., et al., 2014.Review on Iron Availability in Soil:Interaction of Fe Minerals, Plants, and Microbes.Journal of Soils & Sediments, 14(3):538-548. http://jxb.oxfordjournals.org/external-ref?access_num=10.1007/s11368-013-0814-z&link_type=DOI
      Davranche, M., Dia, A., Fakih, M., et al, 2013.Organic Matter Control on the Reactivity of Fe(Ⅲ)-Oxyhydroxides and Associated as in Wetland Soils:A Kinetic Modeling Study.Chemical Geology, 335(1):24-35. http://www.sciencedirect.com/science/article/pii/S0009254112005396
      Eitel, E.M., Taillefert, M., 2017.Mechanistic Investigation of Fe(Ⅲ) Oxide Reduction by Low Molecular Weight Organic Sulfur Species.Geochimica et Cosmochimica Acta, 215:173-188. doi: 10.1016/j.gca.2017.07.016
      Elfarissi, F., Pefferkorn, E., 2000.Kaolinite/Humic Acid Interaction in the Presence of Aluminium Ion.Colloids and Surfaces A Physicochemical and Engineering Aspects, 168(1):1-12. http://www.sciencedirect.com/science/article/pii/S0927775799002927
      Eusterhues, K., Hädrich, A., Neidhardt, J., et al., 2014.Reduction of Ferrihydrite with Adsorbed and Coprecipitated Organic Matter:Microbial Reduction by Geobacter Bremensis vs.Abiotic Reduction by Na-Dithionite.Biogeosciences Discussions, 11(4):6039-6067. http://adsabs.harvard.edu/abs/2014BGeo...11.4953E
      Fahmi, A., Radjagukguk, B., Purwanto, B.H., et al., 2010.The Role of Peat Layers on Iron Dynamics in Peatlands.Jurnal Tanah Tropika, 15(3):195-201. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_6ca2d3cf713ff2f5e88c77fa7b4a9ab8
      Fu, X.F., 2017.Influence of Wetland Utilization on Interactions between Iron and Carbon in Sanjiang Plain and the Environmental Significances (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
      Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705006.htm
      Gorham, E., 1991.Northern Peatlands:Role in the Carbon Cycle and Probable Responses to Climatic Warming.Ecological Applications, 1(2):182-195. doi: 10.2307/1941811
      Graham, T.L., 1991.Flavonoid and Isoflavonoid Distribution in Developing Soybean Seedling Tissues and in Seed and Root Exudates.Plant Physiology, 95(2):594-603. doi: 10.1104/pp.95.2.594
      Gu, B., Schmitt, J., Chen, Z., et al., 1994.Adsorption and Desorption of Natural Organic Matter on Iron Oxide:Mechanisms and Models.Environmental Science & Technology, 28(1):38. http://www.ncbi.nlm.nih.gov/pubmed/22175831
      Harwood, C.S., Parales, R.E., 1996.The Beta-Ketoadipate Pathway and the Biology of Self-Identity.Annual Review of Microbiology, 50(1):553-590. doi: 10.1146/annurev.micro.50.1.553
      Krachler, R., Krachler, R.F., Vond, K.F., et al., 2010.Relevance of Peat-Draining Rivers for the Riverine Input of Dissolved Iron into the Ocean.Science of the Total Environment, 408(11):2402-2408. doi: 10.1016/j.scitotenv.2010.02.018
      Krumina, L., Lyngsie, G., Tunlid, A., et al., 2017.Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles:Iron Reduction versus Surface Catalysis.Environmental Science & Technology, 51(16):9053-9061. http://www.ncbi.nlm.nih.gov/pubmed/28691796/
      LaKind, J.S., Stone, A.T., 1989.Reductive Dissolution of Goethite by Phenolic Reductants.Geochimica et Cosmochimica Acta, 53(5):961-971. doi: 10.1016/0016-7037(89)90202-0
      Larsen, O, Postma, D., 2001.Kinetics of Reductive Bulk Dissolution of Lepidocrocite, Ferrihydrite, and Goethite.Geochimica et Cosmochimica Acta, 65(9):1367-1379. doi: 10.1016/S0016-7037(00)00623-2
      Larsen, O., Postma, D., Jakobsen, R., 2006.The Reactivity of Iron Oxides towards Reductive Dissolution with Ascorbic Acid in a Shallow Sandy Aquifer (Rømø, Denmark).Geochimica et Cosmochimica Acta, 70(19):4827-4835. doi: 10.1016/j.gca.2006.03.027
      Lovley, D., Philips, E.J.P., 1988.Manganese Inhibition of Microbial Iron Reduction in Anaerobic Sediments.Geomicrobiology Journal, 6(3-4):145-155. doi: 10.1080/01490458809377834
      Lovley, D.R., 2004.Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) Reduction.Advances in Microbial Physiology, 49(2):219. http://pubmedcentralcanada.ca/pmcc/articles/PMC372814/
      Lu, Z.J., Deng, Y.M., Du, Y., et al., 2017.EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain.Earth Science, 42(5):771-782 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705012.htm
      Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990.Iron in Antarctic Waters.Nature, 345(6271):156-158. doi: 10.1038/345156a0
      Mercader, R.C., Silva, A.C., Montes, M.L., et al., 2014.Chemical Fate of Iron in a Peatland Developing in the Southern Espinhaço Chain, Brazil.Hyperfine Interactions, 226(1-3):509-516. doi: 10.1007/s10751-013-0975-6
      Mikutta, R., Mikutta, C., Kalbitz, K., et al., 2007.Biodegradation of Forest Floor Organic Matter Bound to Minerals via Different Binding Mechanisms.Geochimica et Cosmochimica Acta, 71(10):2569-2590. doi: 10.1016/j.gca.2007.03.002
      Moran, J.F., Klucas, R.V., Grayer, R.J., et al., 1997.Complexes of Iron with Phenolic Compounds from Soybean Nodules and Other Legume Tissues:Prooxidant and Antioxidant Properties.Free Radical Biology and Medicine, 22(5):861-870. doi: 10.1016/S0891-5849(96)00426-1
      Nevin, K.P., Lovley, D.R., 2002.Mechanisms for Accessing Insoluble Fe(Ⅲ) Oxide during Dissimilatory Fe(Ⅲ) Reduction by Geothrix Fermentans.Applied and Environmental Microbiology, 68(5):2294-2299. doi: 10.1128/AEM.68.5.2294-2299.2002
      Parida, K.M., Das, N.N., 1996.Reductive Dissolution of Hematite in Hydrochloric Acid Medium by Some Inorganic and Organic Reductants:A Comparative Study.Indian Journal of Engineering & Materials Sciences, 3(6):243-247. doi: 10.1021/la960203u
      Prietzel, J., Thieme, A.J., Eusterhues, B.K., et al., 2007.Iron Speciation in Soils and Soil Aggregates by Synchrotron-Based X-Ray Microspectroscopy (XANES, μ-XANES).European Journal of Soil Science, 58(5):1027-1041. doi: 10.1111/ejs.2007.58.issue-5
      Reddy, K.R., Delaune, R.D., et al., 2008.Biogeochemistry of Wetlands:Science and Applications.Soil Science Society of America Journal, 73(2):1779. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_704a6b4451440dc6bf4b36b41cbd8bc5
      Rue, E.L., Bruland, K.W., 1995.Complexation of Iron (Ⅲ) by Natural Organic Ligands in the Central North Pacific as Determined by a New Competitive Ligand Equilibration/Adsorptive Cathodic Stripping Voltammetric Method.Marine Chemistry, 50(1-4):117-138. doi: 10.1016/0304-4203(95)00031-L
      Schwertmann, H.C.U., Cornell, R.M., 2000.Iron Oxides in the Laboratory:Preparation and Characterization.Clay Minerals, 27(3):393. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_cdae05dc4e98ca279bfe7ddde622081d
      Shi, Z., Zachara, J.M., Wang, Z., et al., 2013.Reductive Dissolution of Goethite and Hematite by Reduced Flavins.Geochimica et Cosmochimica Acta, 121(6):139-154. http://www.sciencedirect.com/science/article/pii/S0016703713003268
      Shimizu, M., Zhou, J., Schröder, C., et al., 2013.Dissimilatory Reduction and Transformation of Ferrihydrite-Humic Acid Coprecipitates.Environmental Science & Technology, 47(23):13375-13384. http://europepmc.org/abstract/med/24219167
      Stone, A.T., 1987.Adsorption of Organic Reductants and Subsequent Electron Transfer on Metal Oxide Surfaces.Symposium A:Quarterly Journal in Modern Foreign Literatures, 11:446-461. doi: 10.1021/bk-1987-0323.ch021
      Stumm, W., Sulzberger, B., 1992.The Cycling of Iron in Natural Environments:Considerations Based on Laboratory Studies of Heterogeneous Redox Processes.Geochimica et Cosmochimica Acta, 56(8):3233-3257. doi: 10.1016/0016-7037(92)90301-X
      Suter, D., Banwart, S., Stumm, W., 1991.Dissolution of Hydrous Iron(Ⅲ) Oxides by Reductive Mechanisms.Langmuir, 7(4):809-813. doi: 10.1021/la00052a033
      Taillefert, M, Beckler, J S, Carey, E, et al., 2007.Shewanella Putrefaciens Produces an Fe(Ⅲ)-Solubilizing Organic Ligand during Anaerobic Respiration on Insoluble Fe(Ⅲ) Oxides.Journal of Inorganic Biochemistry, 101(11):1760-1767. http://www.sciencedirect.com/science/article/pii/S0162013407001997
      Tufano, K.J., Fendorf, S., 2008.Confounding Impacts of Iron Reduction on Arsenic Retention.Environmental Science & Technology, 42(13):4777-4783. http://www.ncbi.nlm.nih.gov/pubmed/18678005
      Vempati, R.K., Loeppert, R.H., 1986, Synthetic Ferrihydrite as a Potential Iron Amendment in Calcareous Soils.Journal of Plant Nutrition, 9(3-7):1039-1052. doi: 10.1080/01904168609363504
      Wan, X., Xiang, W., Yu, S., et al., 2013.Determination of Phenols from Peatland Water by Solid Phase Extraction and High Performance Liquid Chromatography.Chinese Journal of Analysis Laboratory, 32(10):15-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-FXSY201310006.htm
      Wang, Y., Xiang, W., Yang, W., et al., 2018.Photo-Stability of Iron-Phenolic Complexes Derived from Peatland Upon Irradiation in Waters under Simulated Sunlight.Chemical Geology, 485:14-23. doi: 10.1016/j.chemgeo.2018.03.016
      Wen, Q.X., 1984.Method of Soil Organic Matter Research.China Agriculture Press, Beijing (in Chinese).
      Wu, Y., Xiang, W., Fu, X.F., et al., 2016.Effect of Phenolic Acids Derived from Peatland on Surface Behavior of Iron and Its Significance:A Case Study in Hani Peatland.Earth Science, 41(4):683-691 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201604014.htm
      Xu, S.L., Duan, W.H., Liu, S.J., et al., 1986.A Study on the Ferrous Ion Oxidized by the Air in Aqueous Solution.Journal of Yunnan University, 8(2):191-197 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YNDZ198602015.htm
      Yu, Z., Loisel, J., Brosseau, D.P., et al., 2010.Global Peatland Dynamics since the Last Glacial Maximum.Geophysical Research Letters, 37(13):69-73. http://www.cabdirect.org/abstracts/20103270680.html
      傅先芳, 2017.湿地开发对三江平原沼泽分布区铁碳相互作用的影响及其环境意义(硕士学位论文).武汉: 中国地质大学.
      高杰, 郑天亮, 邓娅敏, 等, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://earth-science.net/WebPage/Article.aspx?id=3576
      鲁宗杰, 邓娅敏, 杜尧, 等, 2017.江汉平原高砷地下水中DOM三维荧光特征及其指示意义.地球科学, 42(5):771-782. http://earth-science.net/WebPage/Article.aspx?id=3571
      万翔, 向武, 于桑, 等, 2013.固相萃取-高效液相色谱法同时测定泥炭沼泽源水体中9种酚类物质.分析试验室, 32(10):15-19. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FXSY201310006&dbname=CJFD&dbcode=CJFQ
      文启孝, 1984.土壤有机质研究法.北京:农业出版社.
      邬钰, 向武, 傅先芳, 等, 2016.东北哈尼泥炭沼泽中酚酸的组成、酚铁相互作用及其环境意义.地球科学, 41(4):683-691. http://d.old.wanfangdata.com.cn/Periodical/dqkx201604014
      徐绍龄, 段维恒, 刘时杰, 等, 1986.空气氧化水溶液中亚铁离子的研究——1.溶液pH值对氧化速率的影响及铁的水解产物破坏水合亚铁离子"遮蔽效应"的催化机理.云南大学学报, 8(2):191-197. http://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ198602015.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(4)

      Article views (5214) PDF downloads(48) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return