• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 7
    Jul.  2021
    Turn off MathJax
    Article Contents
    Li Wei, Dou Lirong, Wen Zhigang, Zhang Guangya, Cheng Dingsheng, Liu Aixiang, Ke Weili, 2021. Rearranged Hopane: Molecular Tracers for Filling Pathway in Oil Reservoirs. Earth Science, 46(7): 2507-2514. doi: 10.3799/dqkx.2018.322
    Citation: Li Wei, Dou Lirong, Wen Zhigang, Zhang Guangya, Cheng Dingsheng, Liu Aixiang, Ke Weili, 2021. Rearranged Hopane: Molecular Tracers for Filling Pathway in Oil Reservoirs. Earth Science, 46(7): 2507-2514. doi: 10.3799/dqkx.2018.322

    Rearranged Hopane: Molecular Tracers for Filling Pathway in Oil Reservoirs

    doi: 10.3799/dqkx.2018.322
    • Received Date: 2017-08-28
    • Publish Date: 2021-07-15
    • Based on the differences in thermal stability of C30 diahopane(C30DH) and C30 hopane(C30H), this paper studied the feasibility of C30DH/C30H in tracing oil migration orientation and filling pathways.The result shows that the thermal stability of C30DH is considered to be higher than C30H, C30DH/C30H parameters have maturity properties. Meanwhile, contrast C30DH/C30H parameters with carbazoles, found that the C30DH/C30H parameters and carbazoles have great positive correlation. Indicate that the C30DH/C30H parameters not only is a good thermal maturity parameters but also a good in hydrocarbon charging migration. M oilfield is located in the eastern Fula depression. The oils are all normal and the source materials are dual contributions of lower hydrobiont and terrigenous higher plants, the environment is fresh to slight saline water oxidizing to reducing sedimentation, belong to the same group of crude oil.Using C30DH/C30H parameter tracer M oilfield reservoir group of hydrocarbon charging migration direction in Fula depression.The migration path of oil and gas is mainly from north to south, and it also develops from west to east. The classic carbazoles parameter also verified the C30DH/C30H tracer the accuracy of the oil and gas migration. Preliminary results show that C30DH/C30H arameters is an effective parameter for tracer oil filling way.

       

    • loading
    • Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of Alkylated Dibenzothiophenes in Petroleum as a Tool for Maturity Assessments. Organic Geochemistry, 26(7/8): 483-489. https://doi.org/10.1016/s0146-6380(97)00022-3
      Connan, J., Bouroullec, J., Dessort, D., et al., 1986. The Microbial Input in Carbonate-Anhydrite Facies of a Sabkha Palaeoenvironment from Guatemala: A Molecular Approach. Organic Geochemistry, 10(1/2/3): 29-50. https://doi.org/10.1016/0146-6380(86)90007-0
      Dou, L. R., Cheng, D. S., Li, Z., et al., 2013. Petroleum Geology of the Fula Sub-Basin, Muglad Basin, Sudan. Journal of Petroleum Gology, 36(1): 43-60. https://doi.org/10.1111/jpg.12541.
      England, W. A., Mackenzie, A. S., Mann, D. M., et al., 1987. The Movement and Entrapment of Petroleum Fluids in the Subsurface. Journal of the Geological Society, 144(2): 327-347. https://doi.org/10.1144/gsjgs.144.2.0327
      Farrimond, P., Telenaes, N., 1996. Three Series of Rearranged Hopanes in Toarician Sediments. Organic Geochemistry, 25(3-4): 165-177. https://doi.org/10.1016/S0146-6380(96)00127-1
      Huang, H.P., Lu, S.N., Yuan, P.L., 1994. The New Discovered Diahopanes in the Paleozoic Sediments and Their Significance in Petroleum Exploration(in Chinese). Natural Gas Geoscience, 5(3): 23-28(in Chinese with English abstract).
      Kolaczkowska, E., Slougui, N. E., Watt, D. S., et al., 1990. Thermodynamic Stability of Various Alkylated, Dealkylated and Rearranged 17α- and 17β- Hopane Isomers Using Molecular Mechanics Calculations. Organic Geochemistry, 16(4/5/6): 1033-1038. https://doi.org/10.1016/0146-6380(90)90140-u
      Li, M. W., Larter, S. R., Stoddart, D., et al., 1995. Fractionation of Pyrrolic Nitrogen Compounds in Petroleum during Migration: Derivation of Migration-Related Geochemical Parameters. Geological Society, London, Special Publications, 86(1): 103-123. https://doi.org/10.1144/gsl.sp.1995.086.01.09
      Li, M. J., Wang, T. G., Liu, J., et al., 2008. Total Alkyl Dibenzothiophenes Content Tracing the Filling Pathway of Condensate Reservoir in the Fushan Depression, South China Sea. Science in China (Series D: Earth Sciences), 51(S2): 138-145. https://doi.org/10.1007/s11430-008-6025-6
      Li, M. J., Wang, T. G., Liu, J., et al., 2009. Biomarker 17α(H)-Diahopane: A Geochemical Tool to Study the Petroleum System of a Tertiary Lacustrine Basin, Northern South China Sea. Applied Geochemistry, 24(1): 172-183. https://doi.org/10.1016/j.apgeochem.2008.09.016
      Moldowan, J. M., Fago, F. J., Carlson, R. M. K., et al., 1991. Rearranged Hopanes in Sediments and Petroleum. Geochimica et Cosmochimica Acta, 55(11): 3333-3353. https://doi.org/10.1016/0016-7037(91)90492-n
      Nie, C.M., Cheng, F.J., Bai, Y., et al., 2004. Geological Characteristics of Fula Oilfield in Muglad Basin, Sudan. Oil & Gas Geology, 25(6): 671-676 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200406014.htm
      Obermajer, M., Osadetz, K. G., Fowler, M. G., et al., 2002. Delineating Compositional Variabilities among Crude Oils from Central Montana, USA, Using Light Hydrocarbon and Biomarker Characteristics. Organic Geochemistry, 33(12): 1343-1359. https://doi.org/10.1016/s0146-6380(02)00118-3
      Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Cambridge University Press, Cambridge.
      Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3): 224-236. https://doi.org/10.1016/0264-8172(88)90003-7
      Santamaría-Orozco, D., Horsfield, B., di Primio, R., et al., 1998. Influence of Maturity on Distributions of Benzo- And Dibenzothiophenes in Tithonian Source Rocks and Crude Oils, Sonda de Campeche, Mexico. Organic Geochemistry, 28(7/8): 423-439. https://doi.org/10.1016/s0146-6380(98)00009-6
      Smith, M., Bend, S., 2004. Geochemical Analysis and Familial Association of Red River and Winnipeg Reservoired Oils of the Williston Basin, Canada. Organic Geochemistry, 35(4): 443-452. https://doi.org/10.1016/j.orggeochem.2004.01.008
      Telnaes, N., Isaksen, G. H., Farrimond, P., 1992. Unusual Triterpane Distributions in Lacustrine Oils. Organic Geochemistry, 18(6): 785-789. https://doi.org/10.1016/0146-6380(92)90047-2
      Wang, C. J., Fu, J. M., Sheng, G. Y., et al., 2000. Geochemical Characteristics and Applications of 18α(H)-Neohopanes and L7α(H)-Diahopanes. Chinese Science Bulletin, 45(19): 1742-1748. https://doi.org/10.1007/bf02886257
      Wang, T. G., He, F. Q., Li, M. J., et al., 2004. Alkyldibenzothiophenes: Molecular Tracers for Filling Pathway in Oil Reservoirs. Chinese Science Bulletin, 49(22): 2399-2404. https://doi.org/10.1007/bf03183429
      Xiao, Z.Y., Huang, G.H., Lu, Y.H., et al., 2004. Rearranged Hopanes in Oils from the Quele 1 Well, Tarim Basin, and the Significance for Oil Correlation. Petroleum Exploration and Development, 31(2): 35-37(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/syktykf200402009
      Yu, C., Bai, Y., Yu, Z.Y., et al., 2007. Reservoir Formation and Oil and Gas Distribution of Fula Oilfield, Sudan. Petroleum Exploration and Development, 34(5): 633-639 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_syktykf200705021.aspx
      Zhang, M., 2013. Research and Prospects of Genesis of High Abundant Rearranged Hopanes in Geological Bodies(in Chinese). Journal of Oil and Gas Technology, 35(9): 1-4(in Chinese with English abstract). http://www.researchgate.net/publication/308548344_Progress_in_genesis_research_on_abundant_rearranged_hopanes_in_geological_bodies_J
      Zhang, S. C., Zhang, B. M., Bian, L. Z., et al., 2007. The Xiamaling Oil Shale Generated through Rhodophyta over 800 Ma ago. Science in China (Series D: Earth Sciences), 50(4): 527-535. https://doi.org/10.1007/s11430-007-0012-1
      Zhang, W. Z., Yang, H., Hou, L. H., et al., 2009. Distribution and Geological Significance of 17α(H)-Diahopanes from Different Hydrocarbon Source Rocks of Yanchang Formation in Ordos Basin. Science in China (Series D: Earth Sciences), 52(7): 965-974. https://doi.org/10.1007/s11430-009-0076-1
      黄海平, 卢松年, 袁佩兰, 1994. 古代沉积物中新检出的重排藿烷及其在油气勘探上的意义. 天然气地球科学, 23(5): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199403005.htm
      聂昌谋, 陈发景, 白洋, 等, 2004. 苏丹Fula油田油藏地质特征. 石油与天然气地质, 25(6): 671-676. doi: 10.3321/j.issn:0253-9985.2004.06.014
      肖中尧, 黄光辉, 卢玉红, 等, 2004. 库车凹陷却勒1井原油的重排藿烷系列及油源对比. 石油勘探与开发, 31(2): 35-37. doi: 10.3321/j.issn:1000-0747.2004.02.009
      于潮, 白洋, 于中洋, 等, 2007. 苏丹Fula油田成藏规律与油气分布. 石油勘探与开发, 34(5): 633-639. doi: 10.3321/j.issn:1000-0747.2007.05.021
      张敏, 2013. 地质体中高丰度重排藿烷类化合物的成因研究现状与展望. 石油天然气学报, 35(9): 1-4. doi: 10.3969/j.issn.1000-9752.2013.09.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (952) PDF downloads(58) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return