• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 2
    Feb.  2019
    Turn off MathJax
    Article Contents
    Zeng Zixuan, Liu Xiaofeng, Lou Zhanghua, Jin Chong, Gao Lei, 2019. Petrological Classification of Ancient Deep-Marine Siliceous-Argillaceous-Carbonate Rock Series (SAC). Earth Science, 44(2): 475-488. doi: 10.3799/dqkx.2018.579
    Citation: Zeng Zixuan, Liu Xiaofeng, Lou Zhanghua, Jin Chong, Gao Lei, 2019. Petrological Classification of Ancient Deep-Marine Siliceous-Argillaceous-Carbonate Rock Series (SAC). Earth Science, 44(2): 475-488. doi: 10.3799/dqkx.2018.579

    Petrological Classification of Ancient Deep-Marine Siliceous-Argillaceous-Carbonate Rock Series (SAC)

    doi: 10.3799/dqkx.2018.579
    • Received Date: 2018-12-01
    • Publish Date: 2019-02-15
    • Ancient deep-marine siliceous-argillaceous-carbonate rock series (SAC) are general name of silicalite, argillite, carbonate rock and their mixed deposit rocks which are all pelagic and hemipelagic sediments. In this paper, it proposes a new mineralogy-based classification scheme of the SAC rock series based on existing classifications. According to quantitative classification standard["pure (>90%)", "dominate(50%-90%)", "rich(50%-25%)", "bearing (< 25%)"] and using triangular midlines of the ternary plot, the SAC rock series are divided into 4 primary classes and 21 classes. By using the new classification, silicalite, carbonate rock and mixed mudstone primary classes are present in the Lower-Middle Cambrian in the Lower Yangtze region and their petrological features are described by optical microscope observation. The SAC rock series of the Lower-Middle Cambrian show the sedimentary evolution trend from siliceous end to carbonate end. The results of classification of three typical SAC rock series indicate that the new classification scheme clearly reflects the mixed sedimentary evolution trend among three terminal minerals. The classification of the SAC rock series may help provide a significant foundation to quantitative description of the ancient pelagic and hemipelagic sedimentation, and also provide an important basis for exploring the evolution of sedimentary environment.

       

    • loading
    • Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units.AAPG Bulletin, 96(6):1099-1119.doi: 10.1306/10171111052
      Chermak, J.A., Madeline, E.S., 2014.Mineralogy and Trace Element Geochemistry of Gas Shales in the United States:Environmental Implications.International Journal of Coal Geology, 126:32-44.doi: 10.1016/j.coal.2013.12.005
      Fan, J.L., 2017.Lithofacies and Depositional Setting of the Lower Cambrian Organic-Rich Shale of the Lower Yangtze Region, China.Geological Science and Technology Information, 36(5):156-163(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201705021.htm
      Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014.Geological Controls on the Methane Storage Capacity in Organic-Rich Shales.International Journal of Coal Geology, 123:34-51.doi: 10.1016/j.coal.2013.06.010
      Götze, J., Möckel, R., 2012.Quartz:Deposits, Mineralogy and Analysis.Springer Geology, 10:978-1007. http://d.old.wanfangdata.com.cn/Periodical/bqeykdxxb201504032
      Gross, D., Sachsenhofer, R.F., Bechtel, A., et al., 2015.Organic Geochemistry of Mississippian Shales (Bowland Shale Formation) in Central Britain:Implications for Depositional Environment, Source Rock and Gas Shale Potential.Marine and Petroleum Geology, 59:1-21.doi: 10.1016/j.marpetgeo.2014.07.022
      Guo, X.S., 2017.Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area.Earth Science, 42(7):1069-1082(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707004
      Guo, X.S., Hu, D.F., Wen, Y.D., et al., 2014.Major Factors Controlling the Accumulation and High Productivity in Marine Shale Gas in the Lower Paleozoic of Sichuan Basin and Its Periphery:A Case Study of the Wufeng-Longmaxi Formation of Jiaoshiba Area.Geology in China, 41(3):893-901(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201403016.htm
      Hackley, P.C., 2012.Geological and Geochemical Characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, South Texas:A Future Shale Gas Resource?.AAPG Bulletin, 96(8):1449-1482.doi: 10.1306/11221111071
      Helena, G.D., Camronl, M, Richard, L., et al., 2013a.Evaluating the Impact of Mineralogy on Reservoir Quality and Completion Quality of Organic Shale Plays.Proceedings-SPE Annual Technical Conference and Exhibition, (3):2465-2481.
      Helena, G.D., Camron, M., Richard, L., et al., 2013b.Score:A Mineralogy Based Classification Scheme for Organic Mudstones.Proceeding-SPE Annual Technical Conference and Exhibition, (3):2465-2481. http://d.old.wanfangdata.com.cn/Periodical/zgwzbjjyx201712008
      Hennissen, J.A.I., Hough, E., Vane, C.H., et al., 2017.The Prospectivity of a Potential Shale Gas Play:An Example from the Southern Pennine Basin (Central England, UK).Marine and Petroleum Geology, 86:1047-1066.doi: 10.1016/j.marpetgeo.2017.06.033
      Hou, H.H., Shao, L.Y., Li, Y.H., et al., 2017.Geochemistry, Reservoir Characterization and Hydrocarbon Generation Potential of Lacustrine Shales:A Case of YQ-1 Well in the Yuqia Coalfield, Northern Qaidam Basin, NW China.Marine and Petroleum Geology, 88:458-471.doi: 10.1016/j.marpetgeo.2017.08.030
      Hu, J., Chen, Z., Xue, Y.S., et al., 2002.Sponge Spicules in Early Cambrian Hetang Formation, Xiuning, Southern Anhui.Acta Micropalaeontologica Sinica, 19(1):53-62(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtgswxb200201004
      Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068
      Jiang, S., Tang, X.L., Osborne, S., et al., 2017.Enrichment Factors and Current Misunderstanding of Shale Oil and Gas:Case Study of Shale in U.S., Argentina and China.Earth Science, 42(7):1083-1091(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707004.htm
      Jiang, Z.X., 2003.Sedimentology.Petroleum Industry Press, Beijing (in Chinese).
      Loucks, R.G., Ruppel, S.C., 2007.Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas.AAPG Bulletin, 91(4):579-601.doi: 10.1306/11020606059
      Macquaker, J.H.S., Adams, A.E., 2003.Maximizing Information from Fine-Grained Sedimentary Rocks:An Inclusive Nomenclature for Mudstones.Journal of Sedimentary Research, 73(5):735-744.doi: 10.1306/012203730735
      Miliken, K.L, Stirrat, R.J.D., Papazis, P.K., et al., 2012.Carbonate Lithologies of the Mississipian Barnett Shale, Fort Worth Basin, Texas.Shale Reservoirs-Giant Resources for the 21st Century.AAPG Memoir, 97:290-321.
      Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048
      Shipboard Scientific Party, 1984.Introduction and Explanatory Notes.In: Hay, W.W., Sibuet, J.C., eds.Initial Reports Deep Sea Drilling Project, 75(1): 3-25.
      Stow, D.A.V., 2005.Sedimentary Rocks in the Field:A Color Guide.Elsevier Academic Press, Burlington.
      Tian, H., Pan, L., Xiao, X.M., et al., 2013.A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods.Marine and Petroleum Geology, 48:8-19.doi: 10.1016/j.marpetgeo.2013.07.008
      Wang, G.C., Carr, T.R., 2012a.Marcellus Shale Lithofacies Prediction by Multiclass Neural Network Classification in the Appalachian Basin.Mathematical Geosciences, 44(8):975-1004.doi: 10.1007/s11004-012-9421-6
      Wang, G.C., Carr, T.R., 2012b.Methodology of Organic-Rich Shale Lithofacies Identification and Prediction:A Case Study from Marcellus Shale in the Appalachian Basin.Computers & Geosciences, 49:151-163.doi: 10.1016/j.cageo.2012.07.011
      Wang, G.C., Carr, T.R., 2013.Organic-Rich Marcellus Shale Lithofacies Modeling and Distribution Pattern Analysis in the Appalachian Basin.AAPG Bulletin, 97(12):2173-2205.doi: 10.1306/05141312135
      Wang, G.C., Carr, T.R., Ju, Y.W., et al., 2014.Identifying Organic-Rich Marcellus Shale Lithofacies by Support Vector Machine Classifier in the Appalachian Basin.Computers & Geosciences, 64:52-60.doi: 10.1016/j.cageo.2013.12.002
      Wang, P.F., Jiang, Z.X., Yin, L.S., et al., 2017.Lithofacies Classification and Its Effect on Pore Structure of the Cambrian Marine Shale in the Upper Yangtze Platform, South China:Evidence from FE-SEM and Gas Adsorption Analysis.Journal of Petroleum Science and Engineering, 156:307-321.doi: 10.1016/j.petrol.2017.06.011
      Wang, Y., Wang, L.H., Wang, J.Q., et al., 2018.Characterization of Organic Matter Pores in Typical Marine and Terrestrial Shales, China.Journal of Natural Gas Science and Engineering, 49:56-65.doi: 10.1016/j.jngse.2017.11.002
      Wei, Z.F., Wang, Y.L., Wang, G., et al., 2018.Pore Characterization of Organic-Rich Late Permian Da-Long Formation Shale in the Sichuan Basin, Southwestern China.Fuel, 211:507-516.doi: 10.1016/j.fuel.2017.09.068
      Wu, L.Y., Hu, D.F., Lu, Y.C., et al., 2016.Advantageous Shale Lithofacies of Wufeng Formation-Longmaxi Formation in Fuling Gas Field of Sichuan Basin, SW China.Petroleum Exploration and Development, 43(2):189-197(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201602004
      Xiao, S.H., Hu, J., Yuan, X.L., et al., 2005.Articulated Sponges from the Lower Cambrian Hetang Formation in Southern Anhui, South China:Their Age and Implications for the Early Evolution of Sponges.Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1/2):89-117.doi: 10.1016/j.palaeo.2002.02.001
      Yang, F., Ning, Z.F., Wang, Q., et al., 2016.Pore Structure of Cambrian Shales from the Sichuan Basin in China and Implications to Gas Storage.Marine and Petroleum Geology, 70:14-26.doi: 10.1016/j.marpetgeo.2015.11.001
      Yu, S.Y., He, J.Y, 1989.Sedimentary Petrology.China University of Geosciences Press, Wuhan (in Chinese).
      Zhang, L., Danelian, T., Feng, Q.L., et al., 2013.On the Lower Cambrian Biotic and Geochemical Record of the Hetang Formation (Yangtze Platform, South China):Evidence for Biogenic Silica and Possible Presence of Radiolaria.Journal of Micropalaeontology, 32(2):207-217.doi: 10.1144/jmpaleo2013-003
      Zhou, C.M., Jiang, S.Y., 2009.Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China:Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence.Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3-4):279-286.doi: 10.1016/j.palaeo.2008.10.024
      Zhu, X.M., 2008.Sedimentology (Fourth Edition).Petroleum Industry Press, Beijing (in Chinese).
      樊佳莉, 2017.下扬子地区下寒武统富有机质页岩的岩相与沉积环境.地质科技情报, 36(5):156-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110900024723
      郭旭升, 2017.上扬子地区五峰组-龙马溪组页岩层序地层及演化模式.地球科学, 42(7):1069-1082. http://www.earth-science.net/WebPage/Article.aspx?id=3610
      郭旭升, 胡东风, 文冶东, 等, 2014.四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组-龙马溪组为例.中国地质, 41(3):893-901. doi: 10.3969/j.issn.1000-3657.2014.03.016
      胡杰, 陈哲, 薛耀松, 等, 2002.皖南早寒武世荷塘组海绵骨针化石.微体古生物学报, 19(1):53-62. doi: 10.3969/j.issn.1000-0674.2002.01.004
      蒋恕, 唐相路, Steve, O., 等, 2017.页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例.地球科学, 42(7):1083-1091. http://www.earth-science.net/WebPage/Article.aspx?id=3609
      姜在兴, 2003.沉积学.北京:石油工业出版社.
      吴蓝宇, 胡东风, 陆永潮, 等, 2016.四川盆地涪陵气田五峰组-龙马溪组优势岩相.石油勘探与开发, 43(2):189-197. http://d.wanfangdata.com.cn/Periodical/syktykf201602004
      余素玉, 何镜宇, 1989.沉积岩石学.武汉:中国地质大学出版社.
      朱筱敏, 2008.沉积岩石学(第四版).北京:石油工业出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (8164) PDF downloads(115) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return