• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 6
    Jun.  2018
    Turn off MathJax
    Article Contents
    Wang Daming, Qin Kai, Li Zhizhong, Zhao Yingjun, Chen Weitao, Gan Yiqun, 2018. Retrieval of Organic Matter Content in Black Soil Based on Airborne Hyperspectral Remote Sensing Data: Taking Jiansanjiang District in Heilongjiang Province as an Example. Earth Science, 43(6): 2184-2194. doi: 10.3799/dqkx.2018.612
    Citation: Wang Daming, Qin Kai, Li Zhizhong, Zhao Yingjun, Chen Weitao, Gan Yiqun, 2018. Retrieval of Organic Matter Content in Black Soil Based on Airborne Hyperspectral Remote Sensing Data: Taking Jiansanjiang District in Heilongjiang Province as an Example. Earth Science, 43(6): 2184-2194. doi: 10.3799/dqkx.2018.612

    Retrieval of Organic Matter Content in Black Soil Based on Airborne Hyperspectral Remote Sensing Data: Taking Jiansanjiang District in Heilongjiang Province as an Example

    doi: 10.3799/dqkx.2018.612
    • Received Date: 2018-03-06
    • Publish Date: 2018-06-15
    • The retrieval of organic matter content in black soil is of great significance for the utilization and conservation of black soil resources. However, the lack of hyperspectral satellite images has restricted the development of soil organic matter retrieval at the regional scale. In this paper, a typical black soil area of Heilongjiang Province was selected as the study area. Then, the CASI/SASI airborne hyperspectral data, ASD(analytical spectral devices) surface spectral data, and the soil organic matter content data are used to establish the optimal regression model based on the correlation and quantitative relationship between organic matter content and spectral reflectance values of soil samples. Finally, the retrieval of soil organic matter content of the study area is carried out. The results show that the partial least square regression model is more stable than the multivariate stepwise regression model (with determination coefficients of 0.885 and 0.653, respectively), and the accuracy is higher (with root mean square error of 0.424 and 0.744, respectively). The retrieval result derived from partial least square regression is basically consistent with the result of geochemical exploration on the ground.

       

    • loading
    • Ben-Dor, E., Banin, A., 1995.Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties.Soil Science Society of America Journal, 59(2):364-372.doi: 10.2136/sssaj1995.03615995005900020014x
      Cheng, X.F., Song, T.T., Chen, Y., et al., 2017.Retrieval and Analysis of Heavy Metal Content in Soil Based on Measured Spectra in the Lanping Zn-Pb Mining Area, Western Yunnan Province.Acta Petrologica et Mineralogica, 36(1):60-69(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSKW201701005.htm
      Cui, M.Z., 2013.Research on Evaluation of Cultivated Land Resource Security in Jiansanjiang Reclamation Area Based on RS and GIS (Dissertation).Northeast Agricultural University, Harbin (in Chinese with English abstract).
      Fox, G.A., Sabbagh, G.J., 2002.Estimation of Soil Organic Matter from Red and Near-Infrared Remotely Sensed Data Using a Soil Line Euclidean Distance Technique.Soil Science Society of America Journal, 66(6):1922-1929.doi: 10.2136/sssaj2002.1922
      Galvão, L.S., Pizarro, M.A., 2001, Variations in Reflectance of Tropical Soils-Spectral-Chemical Composition Relationships from AVIRIS Data.Remote Sensing of Environment, 75(2):245-255. doi: 10.1016/S0034-4257(00)00170-X
      Gong, S.Q., Wang, X., Shen, R.P., et al., 2010.Study on Heavy Metal Element Content in the Coastal Saline Soil by Hyperspectral Remote Sensing.Remote Sensing Technology and Application, 25(2):169-177 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201002000.htm
      Henderson, T.L., Baumgardner, M.F., Franzmeier, D.P., et al., 1992.High Dimensional Reflectance Analysis of Soil Organic Matter.Soil Science Society of America Journal, 56(3):865-872.doi: 10.2136/sssaj1992.03615995005600030031x
      Lian, G., Guo, X.D., Fu, B.J., et al., 2006.Spatial Variability and Prediction of Soil Organic Matter at County Scale on the Loess Plateau.Progress in Geography, 25(2):112-122, 142(in Chinese with English abstract). doi: 10.11820/dlkxjz.2006.02.013
      Liu, H.J., Pan, Y., Dou, X., et al., 2018.Soil Organic Matter Content Inversion Model with Remote Sensing Image in Field Scale of Blacksoil Area.Transactions of the Chinese Society of Agricultural Engineering, 34(1):127-133(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NYGU201801017.htm
      Liu, H.J., Zhao, C.J., Wang, J.H., et al., 2011.Soil Organic Matter Predicting with Remote Sensing Image in Typical Blacksoil Area of Northeast China.Transactions of the Chinese Society of Agricultural Engineering, 27(8):211-215 (in Chinese with English abstract). http://dl.sciencesocieties.org/publications/tcsae/abstracts/2011/8/2011.8.036
      Mao, X., Liu, L.J., Li, C.A., et al., 2017.Elemental Composition Features of Loess-Paleosol Profile in Fengning, Hebei Province.Earth Science, 42(10):1750-1759(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201710010.htm
      McCarty, G.W., Reeves, J.B., Reeves, V.B., et al., 2002.Mid-Infrared and Near-Infrared Diffuse Reflectance Spectroscopy for Soil Carbon Measurement.Soil Science Society of America Journal, 66(2):640-646.doi: 10.2136/sssaj2002.6400
      Palmer, C.J., Smith, W.D., Conkling, B.L., 2002.Development of a Protocol for Monitoring Status and Trends in Forest Soil Carbon at a National Level.Environmental Pollution, 116:S209-S219.doi: 10.1016/s0269-7491(01)00253-6
      Qiu, H., Chen, H.Y., Xing, S.H., et al., 2017.Soil Organic Matter Estimation Models Based on Hyperion Data.Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 46(4):460-467(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-FJND201704017.htm
      Shuai, Q., Huang, S., Li, Z.Z., et al., 2015.The Metal Element Information Extraction from Hyperion Data Based on the Vegetation Stress Spectra.Earth Science, 40(8):1319-1324(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201508006.htm
      Tan, K., Zhang, Q.Q., Cao, Q., et al., 2015.Hyperspectral Retrieval Model of Soil Organic Matter Content Based on Particle Swarm Optimization-Support Vector Machines.Earth Science, 40(8):1339-1345(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201508009.htm
      Wang, R.C., Su, H.P., Wang, S.F., 1986.Studies on Spectral Reflectance of Typicai Soils and Its Fuzzy Category in Soil Classification in Zhejiang Province.Journal of Zhejiang University, 12(4):464-471(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJNY198604017.htm
      Wu, C.W., Xia, J.X., Duan, Z, R., 2015.Technologies of Predictive Mapping for Soil Organic Matter.Chinese Journal of Soil Science, 46(1):239-247(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRTB201501040.htm
      Wu, S., 2016.Study on the Inversion of Soil Organic Matter Content in Typical Black Soil Zone(Dissertation).Jilin University, Changchun(in Chinese with English abstract).
      Ye, F.W., Liu, D.C., Zhao, Y.J., 2011.Airborne Hyper-Spectral Survey System CASI/SASI and Its Preliminary Application in Uranium Exploration.World Nuclear Geoscience, 28(4):231-236(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWYD201104010.htm
      Yu, L., Hong, Y.S., Geng, L., et al., 2015.Hyperspectral Estimation of Soil Organic Matter Content Based on Partial Least Squares Regression.Transactions of the Chinese Society of Agricultural Engineering, 31(14):103-109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NYGU201514015.htm
      Zhou, T., Shi, P.J., Luo, J.Y., et al., 2007.Estimation of Soil Organic Carbon Based on Remote Sensing and Process Model.Journal of Remote Sensing, 11(1):127-136 (in Chinese with English abstract). doi: 10.1007/s11461-008-0038-3
      程先锋, 宋婷婷, 陈玉, 等, 2017.滇西兰坪铅锌矿区土壤重金属含量的高光谱反演分析.岩石矿物学杂志, 36(1):60-69. http://www.cnki.com.cn/Article/CJFDTotal-NHBH201401014.htm
      崔明哲, 2013.基于RS和GIS的建三江垦区耕地资源安全评价研究(硕士学位论文).哈尔滨:东北农业大学.
      龚绍琦, 王鑫, 沈润平, 等, 2010.滨海盐土重金属含量高光谱遥感研.遥感技术与应用, 25(2):169-177. doi: 10.11873/j.issn.1004-0323.2010.2.169
      连纲, 郭旭东, 傅伯杰, 等, 2006.黄土丘陵沟壑区县域土壤有机质空间分布特征及预测.地理科学进展, 25(2):112-122, 142. doi: 10.11820/dlkxjz.2006.02.013
      刘焕军, 潘越, 窦欣, 等, 2018.黑土区田块尺度土壤有机质含量遥感反演模型.农业工程学报, 34(1):127-133. doi: 10.11975/j.issn.1002-6819.2018.01.17
      刘焕军, 赵春江, 王纪华, 等, 2011.黑土典型区土壤有机质遥感反演.农业工程学报, 27(8):211-215. http://www.cnki.com.cn/Article/CJFDTotal-NYGU201108039.htm
      毛欣, 刘林敬, 李长安, 等, 2017.丰宁黄土-古土壤剖面常量元素地球化学特征.地球科学, 42(10):1750-1759. http://earth-science.net/WebPage/Article.aspx?id=3662
      邱壑, 陈瀚阅, 邢世和, 等, 2017.基于Hyperion数据的耕地土壤有机质含量遥感反演.福建农林大学学报(自然科学版), 46(4):460-467. http://cdmd.cnki.com.cn/Article/CDMD-10300-2008091989.htm
      帅琴, 黄爽, 李志忠, 等, 2015.基于植被胁迫光谱的高光谱遥感植被元素富集信息提取.地球科学, 40(8):1319-1324. http://earth-science.net/WebPage/Article.aspx?id=3135
      谭琨, 张倩倩, 曹茜, 等, 2015.基于粒子群优化支持向量机的矿区土壤有机质含量高光谱反演.地球科学, 40(8):1339-1345. http://earth-science.net/WebPage/Article.aspx?id=3136
      王人潮, 苏海萍, 王深法, 1986.浙江省主要土壤光谱反射特性及其模糊分类在土壤分类中的应用研究.浙江大学学报, 12(4):464-471. http://www.cnki.com.cn/Article/CJFDTotal-STTB201302038.htm
      吴才武, 夏建新, 段峥嵘, 2015.土壤有机质预测性制图方法研究进展.土壤通报, 46(1):239-247. http://mall.cnki.net/magazine/Article/TRTB201501040.htm
      吴嵩, 2016.典型黑土区土壤有机质含量反演研究(博士学位论文).长春:吉林大学.
      叶发旺, 刘德长, 赵英俊, 2011.CASI/SASI航空高光谱遥感测量系统及其在铀矿勘查中的初步应用.世界核地质科学, 28(4):231-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201104008
      于雷, 洪永胜, 耿雷, 等, 2015.基于偏最小二乘回归的土壤有机质含量高光谱估算.农业工程学报, 31(14):103-109. doi: 10.11975/j.issn.1002-6819.2015.14.015
      周涛, 史培军, 罗巾英, 等, 2007.基于遥感与碳循环过程模型估算土壤有机碳储量.遥感学报, 11(1):127-136. doi: 10.11834/jrs.20070117
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(4)

      Article views (5781) PDF downloads(77) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return