Citation: | Zhou Bo, Dong Yunpeng, Yang Zhao, Genser Johann, Liu Xiaoming, 2020. Laser Fusion 40Ar-39Ar Dating Method Using Multi-Collector Noble Gas Mass Spectrometer Argus Ⅵ and Its Geological Application. Earth Science, 45(3): 804-814. doi: 10.3799/dqkx.2019.029 |
Bai, X. J., Qiu, H. N., Liu, W. G., et al., 2018. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS Ⅵ Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus. Journal of Earth Science, 29(2): 408-415. https://doi.org/10.1007/s12583-017-0948-9
|
Bi, L.S., Liang, X., Wang, G.H., et al., 2018. Metamorphism-Deformation Phases and Ar-Ar Chronological Constraints of the Lancang Group in the Middle and Southern Sections of the Lancangjiang Tectonic Belt, Western Yunnan. Earth Science, 43(9): 3252-3266 (in Chinese with English abstract).
|
Chen, J., Xie, Z.Y., Li, B., et al., 2013. Geological and Gechemical Characteristics of the Ore-Bearing Intrusions from the Lalingzaohuo Mo Polymetallic Deposit and Its Metallogenic Significance. Geology and Exploration, 49(5):813-824 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201305002
|
Dong, H. W., Meng, Y. K., Xu, Z. Q., et al., 2019. Timing of Displacement along the YardoiDetachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 30(3): 535-548. https://doi.org/10.1007/s12583-019-1223-z
|
Dong, Y. P., Genser, J., Neubauer, F., et al., 2011. U-Pb and 40Ar/39Ar Geochronological Constraints on the Exhumation History of the North Qinling Terrane, China. Gondwana Research, 19(4): 881-893. https://doi.org/10.1016/j.gr.2010.09.007
|
Hall, C. M., 2014. Direct Measurement of Recoil Effects on 40Ar/39Ar Standards. Geological Society, London, Special Publications, 378(1): 53-62. https://doi.org/10.1144/sp378.7
|
Handler, R., Neubauer, F., Velichkova, S.H., et al., 2004. 40Ar/39Ar Age Constraints on the Timing of Magmatism and Postmagmatic Cooling in the Panagyurishte Region, Bulgaria. Schweizerische Mineralogische und Petrographische Mitteilungen, 84, 119-132. http://www.researchgate.net/publication/233702750_40Ar39Ar_age_constraints_on_the_timing_of_magmatism_and_post-magmatic_cooling_in_the_Panagyurishte_region_Bulgaria
|
Hicks, A., Barclay, J., Mark, D. F., et al., 2012. Tristan da Cunha: Constraining Eruptive Behavior Using the 40Ar/39Ar Dating Technique. Geology, 40(8): 723-726. https://doi.org/10.1130/g33059.1
|
Hodges, K. V., 2005.40Ar/39Ar Thermochronology of Detrital Minerals. Reviews in Mineralogy and Geochemistry, 58(1): 239-257. https://doi.org/10.2138/rmg.2005.58.9
|
Hu, R. G., Bai, X. J., Wijbrans, J., et al., 2018. Occurrence of Excess 40Ar in Amphibole: Implications of 40Ar/39Ar Dating by Laser Stepwise Heating and in Vacuo Crushing. Journal of Earth Science, 29(2): 416-426. https://doi.org/10.1007/s12583-017-0947-x
|
Jiang, Y. D., Qiu, H. N., Xu, Y. G., 2012. Hydrothermal Fluids, Argon Isotopes and Mineralization Ages of the Fankou Pb-Zn Deposit in South China: Insights from Sphalerite 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 84: 369-379. https://doi.org/10.1016/j.gca.2012.01.044
|
Jicha, B. R., Singer, B. S., Sobol, P., 2016. Re-Evaluation of the Ages of 40Ar/39Ar Sanidine Standards and Supereruptions in the Western U.S. Using a Noblesse Multi-Collector Mass Spectrometer. Chemical Geology, 431: 54-66. https://doi.org/10.1016/j.chemgeo.2016.03.024
|
Jourdan, F., Mark, D. F., Verati, C., 2014. Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences-Introduction. Geological Society, London, Special Publications, 378(1): 1-8. https://doi.org/10.1144/sp378.24
|
Jourdan, F., Renne, P. R., 2007. Age Calibration of the Fish Canyon Sanidine 40Ar/39Ar Dating Standard Using Primary K-Ar Standards. Geochimica et Cosmochimica Acta, 71(2): 387-402. https://doi.org/10.1016/j.gca.2006.09.002
|
Jourdan, F., Verati, C., Féraud, G., 2006. Intercalibration of the Hb3gr 40Ar/39Ar Dating Standard. Chemical Geology, 231(3): 177-189. https://doi.org/10.1016/j.chemgeo.2006.01.027
|
Koppers, A. A. P., 2002. ArArCALC: Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/s0098-3004(01)00095-4
|
Krummen, M., Burgess, D.G., Wapelhorst, E., et al., 2009. Argon Isotope Ratio Measurements Using Different Detector Strategies. Geochimica et Cosmochimica Acta, 73(13): A700. http://www.researchgate.net/publication/252490149_Argon_isotope_ratio_measurements_using_different_detector_strategies
|
Kuiper, K. F., Deino, A., Hilgen, F. J., et al., 2008. Synchronizing Rock Clocks of Earth History. Science, 320(5875): 500-504. https://doi.org/10.1126/science.1154339
|
Lovera, O. M., Richter, F. M., Harrison, T. M., 1989. The 40Ar/39Ar Thermochronometry for Slowly Cooled Samples Having a Distribution of Diffusion Domain Sizes. Journal of Geophysical Research, 94(B12): 17917-17935. https://doi.org/10.1029/jb094ib12p17917
|
Lovera, O. M., Richter, F. M., Harrison, T. M., 1991. Diffusion Domains Determined by 39Ar Released during Step Heating. Journal of Geophysical Research, 96(B2): 2057. https://doi.org/10.1029/90jb02217
|
Mark, D. F., Barfod, D., Stuart, F. M., et al., 2009. The ARGUS Multicollector Noble Gas Mass Spectrometer: Performance for 40Ar/39Ar Geochronology. Geochemistry, Geophysics, Geosystems, 10(10): Q0AA02. https://doi.org/10.1029/2009gc002643
|
Mock, C., Arnaud, N. O., Cantagrel, J. M., 1999. An Early Unroofing in Northeastern Tibet? Constraints from 40Ar/39Ar Thermochronology on Granitoids from the Eastern Kunlun Range (Qianghai, NW China). Earth and Planetary Science Letters, 171(1): 107-122. https://doi.org/10.1016/s0012-821x(99)00133-8
|
Phillips, D., Matchan, E. L., 2013. Ultra-High Precision 40Ar/39Ar Ages for Fish Canyon Tuff and Alder Creek Rhyolite Sanidine: New Dating Standards Required? Geochimica et Cosmochimica Acta, 121: 229-239. https://doi.org/10.1016/j.gca.2013.07.003
|
Phillips, D., Matchan, E. L., Honda, M., et al., 2017. Astronomical Calibration of 40Ar/39Ar Reference Minerals Using High-Precision, Multi-Collector (ARGUSVI) Mass Spectrometry. Geochimica et Cosmochimica Acta, 196: 351-369. https://doi.org/10.1016/j.gca.2016.09.027
|
Qiu, H.N., Bai, X.J., 2019. 40Ar/39Ar Dating Technique of Fluid Inclusions and Its Application. Earth Science, 44(3):685-697 (in Chinese with English abstract).
|
Qiu, H.N., Bai, X.J., Liu, W.G., et al., 2015. Automatic 40Ar/39Ar Dating Technique Using Multicollector ArgusVI MS with Home-Made Apparatus. Geochimia, 44(5): 477-484 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201505007
|
Renne, P. R., Balco, G., Ludwig, K. R., et al., 2011. Response to the Comment by W.H. Schwarz et al. on "Joint Determination of 40K Decay Constants and 40Ar /40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology" by P.R. Renne et al. 2010. Geochimica et Cosmochimica Acta, 75(17): 5097-5100. https://doi.org/10.1016/j.gca.2011.06.021
|
Renne, P. R., Mundil, R., Balco, G., et al., 2010. Joint Determination of 40K Decay Constants and 40Ar /40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology. Geochimica et Cosmochimica Acta, 74(18): 5349-5367. https://doi.org/10.1016/j.gca.2010.06.017
|
Renne, P. R., Sharp, W. D., Deino, A. L., et al., 1997. 40Ar/39Ar Dating into the Historical Realm: Calibration against Pliny the Younger. Science, 277(5330): 1279-1280. https://doi.org/10.1126/science.277.5330.1279
|
Renne, P. R., Swisher, C.C., Deino, A.L., et al., 1998. Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating. Chemical Geology, 145(1-2):117-152. https://doi.org/10.1016/s0009-2541(97)00159-9
|
Rieser, A. B., Liu, Y., Genser, J., et al., 2006. 40Ar/39Ar Ages of Detrital White Mica Constrain the Cenozoic Development of the Intracontinental Qaidam Basin, China. Geological Society of America Bulletin, 118(11-12): 1522-1534. https://doi.org/10.1130/b25962.1
|
Spell, T. L., McDougall, I., 2003. Characterization and Calibration of 40Ar/39Ar Dating Standards. Chemical Geology, 198(3-4): 189-211. https://doi.org/10.1016/s0009-2541(03)00005-6
|
Steiger, R. H., Jäger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. https://doi.org/10.1016/0012-821x(77)90060-7
|
Verati, C., Jourdan, F., 2014. Modelling Effect of Sericitization of Plagioclase on the 40K/40Ar and 40Ar/39Ar Chronometers: Implication for Dating Basaltic Rocks and Mineral Deposits. Geological Society, London, Special Publications, 378(1): 155-174. https://doi.org/10.1144/sp378.14
|
Wang, B.Z., Chen, J., Luo, Z.H., et al., 2014.Spatial and Temporal Distribution of Late Permian-Early Jurassic Intrusion Assemblages in Eastern Qimantag, East Kunlun, and Their Tectonic Settings. Acta Petrologica Sinica, 30(11):3213-3228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411009
|
Wang, F., Feng, H. L., Shi, W. B., et al., 2016. Relief History and Denudation Evolution of the Northern Tibet Margin: Constraints from 40Ar/39Ar and (U-Th)/He Dating and Implications for Far-Field Effect of Rising Plateau. Tectonophysics, 675: 196-208. https://doi.org/10.1016/j.tecto.2016.03.001
|
Wang, F., Jourdan, F., Lo, C. H., et al., 2014a. YBCs Sanidine: A New Standard for 40Ar/39Ar Dating. Chemical Geology, 388: 87-97. https://doi.org/10.1016/j.chemgeo.2014.09.003
|
Wang, F., Zhu, R. X., Hou, Q. L., et al., 2014b. 40Ar/39Ar Thermochronology on Central China Orogen: Cooling, Uplift and Implications for Orogeny Dynamics. Geological Society, London, Special Publications, 378(1): 189-206. https://doi.org/10.1144/sp378.3
|
Wang, F., Shi, W.B., Zhu, R.X., 2014.Problems of Modern 40Ar/39Ar Geochronology: Reviews. Acta Petrologica Sinica, 30(2): 326-340 (in Chinese with English abstract).
|
Wang, L. Z., Wang, L. Y., Peng, P. G., et al., 2018. A Thermal Event in the Ordos Basin: Insights from Illite 40Ar/39Ar Dating with Regression Analysis. Journal of Earth Science, 29(3): 629-638. https://doi.org/10.1007/s12583-017-0903-7
|
毕丽莎, 梁晓, 王根厚, 等, 2018.滇西澜沧江构造带中-南段澜沧群变质变形期次及Ar-Ar年代学约束.地球科学, 43(9): 3252-3266. doi: 10.3799/dqkx.2018.999
|
陈静, 谢智勇, 李彬, 等, 2013.东昆仑拉陵灶火钼多金属矿床含矿岩体地质地球化学特征及其成矿意义.地质与勘探, 49(5):813-824. http://d.old.wanfangdata.com.cn/Periodical/dzykt201305002
|
邱华宁, 白秀娟, 2019.流体包裹体40Ar/39Ar定年技术与应用.地球科学, 44(3):685-697. doi: 10.3799/dqkx.2019.007
|
邱华宁, 白秀娟, 刘文贵, 等, 2015.自动化40Ar/39Ar定年设备研制.地球化学, 44(5): 477-484. doi: 10.3969/j.issn.0379-1726.2015.05.007
|
王秉璋, 陈静, 罗照华, 等, 2014.东昆仑祁漫塔格东段晚二叠世-早侏罗世侵入岩岩石组合时空分布、构造环境的讨论.岩石学报, 30(11):3213-3228. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411009
|
王非, 师文贝, 朱日祥, 2014. 40Ar/39Ar年代学中几个重要问题的讨论.岩石学报, 30(2): 326-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201402002
|
![]() |
![]() |