Citation: | Ye Huijun, Zhang Ruixue, Wu Pan, Han Zhiwei, Zha Xuefang, Li Xuexian, Qin Yingji, Shi Jinfang, 2019. Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area. Earth Science, 44(9): 2887-2898. doi: 10.3799/dqkx.2019.201 |
Buckerfield, S. J., Waldron, S., Quilliam, R. S., et al., 2019. How can we Improve Understanding of Faecal Indicator Dynamics in Karst Systems under Changing Climatic, Population, and Land Use Stressors? — Research Opportunities in SW China. Science of the Total Environment, 646: 438-447. https://doi.org/10.1016/j.scitotenv.2018.07.292
|
Cao, J.H., Jiang, Z.C., Yuan, D.X., et al., 2017.The Progress in the Study of the Karst Dynamic System and Global Changes in the Past 30 Years.Geology in China, 44(5):874-900 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201705005.htm
|
Cao, J. H., Yuan, D. X., Tong, L. Q., et al., 2015. An Overview of Karst Ecosystem in Southwest China: Current State and Future Management. Journal of Resources and Ecology, 6(4): 247-256. https://doi.org/10.5814/j.issn.1674-764x.2015.04.008
|
Caschetto, M., Colombani, N., Mastrocicco, M., et al., 2017. Nitrogen and Sulphur Cycling in the Saline Coastal Aquifer of Ferrara, Italy. A Multi-Isotope Approach. Applied Geochemistry, 76: 88-98. https://doi.org/10.1016/j.apgeochem.2016.11.014
|
Cheung, K., Klassen, P., Mayer, B., et al., 2010. Major Ion and Isotope Geochemistry of Fluids and Gases from Coalbed Methane and Shallow Groundwater Wells in Alberta, Canada. Applied Geochemistry, 25(9): 1307-1329. https://doi.org/10.1016/j.apgeochem.2010.06.002
|
Gutiérrez, F., Gutiérrez, M., 2016. Landforms of the Earth: An Illustrated Guide. Springer International Publishing, Switzerland.
|
Han, G. L., Liu, C. Q., 2004. Water Geochemistry Controlled by Carbonate Dissolution: A Study of the River Waters Draining Karst-Dominated Terrain, Guizhou Province, China. Chemical Geology, 204(1-2): 1-21. https://doi.org/10.1016/j.chemgeo.2003.09.009
|
Hartmann, A., Goldscheider, N., Wagener, T., et al., 2014. Karst Water Resources in a Changing World: Review of Hydrological Modeling Approaches. Reviews of Geophysics, 52(3): 218-242. https://doi.org/10.1002/2013rg000443
|
Hendry, M. J., Cherry, J. A., Wallick, E. I., 1986. Origin and Distribution of Sulfate in a Fractured till in Southern Alberta, Canada. Water Resources Research, 22(1): 45-61. https://doi.org/10.1029/wr022i001p00045
|
Hosono, T., Tokunaga, T., Tsushima, A., et al., 2014. Combined Use of δ13C, δ15N, and δ34S Tracers to Study Anaerobic Bacterial Processes in Groundwater Flow Systems. Water Research, 54: 284-296. https://doi.org/10.1016/j.watres.2014.02.005
|
Jia, Y. N., Yuan, D. X., 2004. The Influence of Land Use Change on Karst Water Quality of Shuicheng Basin in Guizhou Province. Journal of Geographical Sciences, 14(2): 143-150. https://doi.org/10.1007/bf02837529
|
Kalhor, K., Ghasemizadeh, R., Rajic, L., et al., 2019. Assessment of Groundwater Quality and Remediation in Karst Aquifers: A Review. Groundwater for Sustainable Development, 8: 104-121. https://doi.org/10.1016/j.gsd.2018.10.004
|
Li, H., Wen, Z., Xie, X.J., et al., 2017.Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City.Earth Science, 42(5):804-812 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705016
|
Li, X. D., Liu, C. Q., Harue, M., et al., 2010. The Use of Environmental Isotopic (C, Sr, S) and Hydrochemical Tracers to Characterize Anthropogenic Effects on Karst Groundwater Quality: A Case Study of the Shuicheng Basin, SW China. Applied Geochemistry, 25(12): 1924-1936. https://doi.org/10.1016/j.apgeochem.2010.10.008
|
Li, X. X., Wu, P., Han, Z. W., et al., 2016. Sources, Distributions of Fluoride in Waters and Its Influencing Factors from an Endemic Fluorosis Region in Central Guizhou, China. Environmental Earth Sciences, 75(11): 981-995. https://doi.org/10.1007/s12665-016-5779-y
|
Liu, X.L., Liu, C.Q., Li, S.L., et al., 2010.Evaluation of Ground Water in Liupanshui City of Guizhou Province Based on the Determination of δ13C and 87Sr/86Sr. Chinese Journal of Ecology, 29(5):978-984 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201005024
|
Massmann, G., Tichomirowa, M., Merz, C., et al., 2003. Sulfide Oxidation and Sulfate Reduction in a Shallow Groundwater System (Oderbruch Aquifer, Germany). Journal of Hydrology, 278(1-4): 231-243. https://doi.org/10.1016/s0022-1694(03)00153-7
|
Pauwels, H., Ayraud-Vergnaud, V., Aquilina, L., et al., 2010a. The Fate of Nitrogen and Sulfur in Hard-Rock Aquifers as Shown by Sulfate-Isotope Tracing. Applied Geochemistry, 25(1): 105-115. https://doi.org/10.1016/j.apgeochem.2009.11.001
|
Pauwels, H., Pettenati, M., Greffié, C., 2010b. The Combined Effect of Abandoned Mines and Agriculture on Groundwater Chemistry. Journal of Contaminant Hydrology, 115(1-4): 64-78. https://doi.org/10.1016/j.jconhyd.2010.04.003
|
Pu, J. B., Cao, M., Zhang, Y. Z., et al., 2014. Hydrochemical Indications of Human Impact on Karst Groundwater in a Subtropical Karst Area, Chongqing, China. Environmental Earth Sciences, 72(5): 1683-1695. https://doi.org/10.1007/s12665-014-3073-4
|
Puig, R., Folch, A., Menció, A., et al., 2013. Multi-Isotopic Study (15N, 34S, 18O, 13C) to Identify Processes Affecting Nitrate and Sulfate in Response to Local and Regional Groundwater Mixing in a Large-Scale Flow System. Applied Geochemistry, 32: 129-141. https://doi.org/10.1016/j.apgeochem.2012.10.014
|
Qi, F.Q., 2017. Main Types and Characteristics of Groundwater in Liupanshui. Resource Information and Engineering, 32(3):77-78 (in Chinese with English abstract).
|
Rashid, A., Khattak, S. A., Ali, L., et al., 2019. Geochemical Profile and Source Identification of Surface and Groundwater Pollution of District Chitral, Northern Pakistan. Microchemical Journal, 145: 1058-1065. https://doi.org/10.1016/j.microc.2018.12.025
|
Schilling, K. E., Jacobson, P. J., Vogelgesang, J. A., 2015. Agricultural Conversion of Floodplain Ecosystems: Implications for Groundwater Quality. Journal of Environmental Management, 153: 74-83. https://doi.org/10.1016/j.jenvman.2015.02.004
|
Shi, B., 2016.Coal Resource Potential Evaluation in Liupanshui Coalfield, Guizhou Province.Coal Quality Technology, (3):26-33 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mzjs201603010
|
Sun, J., Kobayashi, T., Strosnider, W. H. J., et al., 2017. Stable Sulfur and Oxygen Isotopes as Geochemical Tracers of Sulfate in Karst Waters. Journal of Hydrology, 551: 245-252. https://doi.org/10.1016/j.jhydrol.2017.06.006
|
Sutton, J. E., Screaton, E. J., Martin, J. B., 2014. Insights on Surface-Water/Groundwater Exchange in the Upper Floridan Aquifer, North-Central Florida (USA), from Streamflow Data and Numerical Modeling. Hydrogeology Journal, 23(2): 305-317. https://doi.org/10.1007/s10040-014-1213-2
|
Touhari, F., Meddi, M., Mehaiguene, M., et al., 2014. Hydrogeochemical Assessment of the Upper Cheliff Groundwater (North West Algeria). Environmental Earth Sciences, 73(7): 3043-3061. https://doi.org/10.1007/s12665-014-3598-6
|
World Health Organization, 2008. Guidelines for Drinking-Water Quality, Second Edition. World Health Organization, Geneva. https://www.who.int/water_sanitation_health/dwq/2edvol1i.pdf
|
Wu, P., Tang, C. Y., Zhu, L. J., et al., 2009. Hydrogeochemical Characteristics of Surface Water and Groundwater in the Karst Basin, Southwest China. Hydrological Processes, 23(14): 2012-2022. https://doi.org/10.1002/hyp.7332
|
Wu, Y., Luo, Z. H., Luo, W., et al., 2018. Multiple Isotope Geochemistry and Hydrochemical Monitoring of Karst Water in a Rapidly Urbanized Region. Journal of Contaminant Hydrology, 218: 44-58. https://doi.org/10.1016/j.jconhyd.2018.10.009
|
Yu, H.T., Ma, T., Deng, Y.M., et al., 2017.Hydrochemical Characteristics of Shallow Groundwater in Eastern Jianghan Plain. Earth Science, 42(5):685-692 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705004
|
曹建华, 蒋忠诚, 袁道先, 等, 2017.岩溶动力系统与全球变化研究进展.中国地质, 44(5):874-900. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201705005
|
李华, 文章, 谢先军, 等, 2017.贵阳市三桥地区岩溶地下水水化学特征及其演化规律.地球科学, 42(5):804-812. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705016
|
刘小龙, 刘丛强, 李思亮, 等, 2010.碳与锶同位素在六盘水地下水研究中的应用.生态学杂志, 29(5):978-984. http://d.old.wanfangdata.com.cn/Periodical/stxzz201005024
|
祁芙前, 2017.六盘水市主要地下水类型及特征.资源信息与工程, 32(3): 77-78. doi: 10.3969/j.issn.2095-5391.2017.03.038
|
石碧, 2016.贵州省六盘水煤田煤炭资源潜力评价.煤质技术, (3):26-33. doi: 10.3969/j.issn.1007-7677.2016.03.010
|
於昊天, 马腾, 邓娅敏, 等, 2017.江汉平原东部地区浅层地下水水化学特征.地球科学, 42(5):685-692. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705004
|