• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 9
    Sep.  2019
    Turn off MathJax
    Article Contents
    Ye Huijun, Zhang Ruixue, Wu Pan, Han Zhiwei, Zha Xuefang, Li Xuexian, Qin Yingji, Shi Jinfang, 2019. Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area. Earth Science, 44(9): 2887-2898. doi: 10.3799/dqkx.2019.201
    Citation: Ye Huijun, Zhang Ruixue, Wu Pan, Han Zhiwei, Zha Xuefang, Li Xuexian, Qin Yingji, Shi Jinfang, 2019. Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area. Earth Science, 44(9): 2887-2898. doi: 10.3799/dqkx.2019.201

    Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area

    doi: 10.3799/dqkx.2019.201
    • Received Date: 2019-06-27
    • Publish Date: 2019-09-15
    • The surface water and groundwater which are critical resources for daily life, industrial and agricultural production exchange frequently in Liupanshui mining area.To ensure the security and sustainability of water system in the karst critical zone, thirty-three water samples were collected from the typical Liupanshui mining area in September 2015. They were analyzed by using the methods of hydrochemistry, correlation analysis and ion ratios. The results show most groundwater hydrochemical type was CaHCO3 type, and some was Ca-SO4 type. Most surface water was Ca-HCO3 type and Ca-SO4 type. Differently, the mine waste water was Na-HCO3 type and the acid mine waste water was Ca-SO4 type. There was a significant positive correlation between Ca2+, Mg2+ and HCO3- which was mainly controlled by reaction between water and carbonate, and some Na+ and K+ were controlled by reaction between water and silicate. The sources of Cl- were mainly sewage, most of NO3- were affected by agricultural production, and SO42- came from multiple sources. Mining activities, urbanization and agricultural production have affected the compositions of water ions, in addition mining activities have accelerated the dissolution of carbonate. These three factors have made significant changes in the hydrochemistry types. Under these compound influences affected by human activities, mining activities are the key driving factors for the changes of hydrochemical characteristics in water system of the karst critical zone.

       

    • loading
    • Buckerfield, S. J., Waldron, S., Quilliam, R. S., et al., 2019. How can we Improve Understanding of Faecal Indicator Dynamics in Karst Systems under Changing Climatic, Population, and Land Use Stressors? — Research Opportunities in SW China. Science of the Total Environment, 646: 438-447. https://doi.org/10.1016/j.scitotenv.2018.07.292
      Cao, J.H., Jiang, Z.C., Yuan, D.X., et al., 2017.The Progress in the Study of the Karst Dynamic System and Global Changes in the Past 30 Years.Geology in China, 44(5):874-900 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201705005.htm
      Cao, J. H., Yuan, D. X., Tong, L. Q., et al., 2015. An Overview of Karst Ecosystem in Southwest China: Current State and Future Management. Journal of Resources and Ecology, 6(4): 247-256. https://doi.org/10.5814/j.issn.1674-764x.2015.04.008
      Caschetto, M., Colombani, N., Mastrocicco, M., et al., 2017. Nitrogen and Sulphur Cycling in the Saline Coastal Aquifer of Ferrara, Italy. A Multi-Isotope Approach. Applied Geochemistry, 76: 88-98. https://doi.org/10.1016/j.apgeochem.2016.11.014
      Cheung, K., Klassen, P., Mayer, B., et al., 2010. Major Ion and Isotope Geochemistry of Fluids and Gases from Coalbed Methane and Shallow Groundwater Wells in Alberta, Canada. Applied Geochemistry, 25(9): 1307-1329. https://doi.org/10.1016/j.apgeochem.2010.06.002
      Gutiérrez, F., Gutiérrez, M., 2016. Landforms of the Earth: An Illustrated Guide. Springer International Publishing, Switzerland.
      Han, G. L., Liu, C. Q., 2004. Water Geochemistry Controlled by Carbonate Dissolution: A Study of the River Waters Draining Karst-Dominated Terrain, Guizhou Province, China. Chemical Geology, 204(1-2): 1-21. https://doi.org/10.1016/j.chemgeo.2003.09.009
      Hartmann, A., Goldscheider, N., Wagener, T., et al., 2014. Karst Water Resources in a Changing World: Review of Hydrological Modeling Approaches. Reviews of Geophysics, 52(3): 218-242. https://doi.org/10.1002/2013rg000443
      Hendry, M. J., Cherry, J. A., Wallick, E. I., 1986. Origin and Distribution of Sulfate in a Fractured till in Southern Alberta, Canada. Water Resources Research, 22(1): 45-61. https://doi.org/10.1029/wr022i001p00045
      Hosono, T., Tokunaga, T., Tsushima, A., et al., 2014. Combined Use of δ13C, δ15N, and δ34S Tracers to Study Anaerobic Bacterial Processes in Groundwater Flow Systems. Water Research, 54: 284-296. https://doi.org/10.1016/j.watres.2014.02.005
      Jia, Y. N., Yuan, D. X., 2004. The Influence of Land Use Change on Karst Water Quality of Shuicheng Basin in Guizhou Province. Journal of Geographical Sciences, 14(2): 143-150. https://doi.org/10.1007/bf02837529
      Kalhor, K., Ghasemizadeh, R., Rajic, L., et al., 2019. Assessment of Groundwater Quality and Remediation in Karst Aquifers: A Review. Groundwater for Sustainable Development, 8: 104-121. https://doi.org/10.1016/j.gsd.2018.10.004
      Li, H., Wen, Z., Xie, X.J., et al., 2017.Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City.Earth Science, 42(5):804-812 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705016
      Li, X. D., Liu, C. Q., Harue, M., et al., 2010. The Use of Environmental Isotopic (C, Sr, S) and Hydrochemical Tracers to Characterize Anthropogenic Effects on Karst Groundwater Quality: A Case Study of the Shuicheng Basin, SW China. Applied Geochemistry, 25(12): 1924-1936. https://doi.org/10.1016/j.apgeochem.2010.10.008
      Li, X. X., Wu, P., Han, Z. W., et al., 2016. Sources, Distributions of Fluoride in Waters and Its Influencing Factors from an Endemic Fluorosis Region in Central Guizhou, China. Environmental Earth Sciences, 75(11): 981-995. https://doi.org/10.1007/s12665-016-5779-y
      Liu, X.L., Liu, C.Q., Li, S.L., et al., 2010.Evaluation of Ground Water in Liupanshui City of Guizhou Province Based on the Determination of δ13C and 87Sr/86Sr. Chinese Journal of Ecology, 29(5):978-984 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201005024
      Massmann, G., Tichomirowa, M., Merz, C., et al., 2003. Sulfide Oxidation and Sulfate Reduction in a Shallow Groundwater System (Oderbruch Aquifer, Germany). Journal of Hydrology, 278(1-4): 231-243. https://doi.org/10.1016/s0022-1694(03)00153-7
      Pauwels, H., Ayraud-Vergnaud, V., Aquilina, L., et al., 2010a. The Fate of Nitrogen and Sulfur in Hard-Rock Aquifers as Shown by Sulfate-Isotope Tracing. Applied Geochemistry, 25(1): 105-115. https://doi.org/10.1016/j.apgeochem.2009.11.001
      Pauwels, H., Pettenati, M., Greffié, C., 2010b. The Combined Effect of Abandoned Mines and Agriculture on Groundwater Chemistry. Journal of Contaminant Hydrology, 115(1-4): 64-78. https://doi.org/10.1016/j.jconhyd.2010.04.003
      Pu, J. B., Cao, M., Zhang, Y. Z., et al., 2014. Hydrochemical Indications of Human Impact on Karst Groundwater in a Subtropical Karst Area, Chongqing, China. Environmental Earth Sciences, 72(5): 1683-1695. https://doi.org/10.1007/s12665-014-3073-4
      Puig, R., Folch, A., Menció, A., et al., 2013. Multi-Isotopic Study (15N, 34S, 18O, 13C) to Identify Processes Affecting Nitrate and Sulfate in Response to Local and Regional Groundwater Mixing in a Large-Scale Flow System. Applied Geochemistry, 32: 129-141. https://doi.org/10.1016/j.apgeochem.2012.10.014
      Qi, F.Q., 2017. Main Types and Characteristics of Groundwater in Liupanshui. Resource Information and Engineering, 32(3):77-78 (in Chinese with English abstract).
      Rashid, A., Khattak, S. A., Ali, L., et al., 2019. Geochemical Profile and Source Identification of Surface and Groundwater Pollution of District Chitral, Northern Pakistan. Microchemical Journal, 145: 1058-1065. https://doi.org/10.1016/j.microc.2018.12.025
      Schilling, K. E., Jacobson, P. J., Vogelgesang, J. A., 2015. Agricultural Conversion of Floodplain Ecosystems: Implications for Groundwater Quality. Journal of Environmental Management, 153: 74-83. https://doi.org/10.1016/j.jenvman.2015.02.004
      Shi, B., 2016.Coal Resource Potential Evaluation in Liupanshui Coalfield, Guizhou Province.Coal Quality Technology, (3):26-33 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mzjs201603010
      Sun, J., Kobayashi, T., Strosnider, W. H. J., et al., 2017. Stable Sulfur and Oxygen Isotopes as Geochemical Tracers of Sulfate in Karst Waters. Journal of Hydrology, 551: 245-252. https://doi.org/10.1016/j.jhydrol.2017.06.006
      Sutton, J. E., Screaton, E. J., Martin, J. B., 2014. Insights on Surface-Water/Groundwater Exchange in the Upper Floridan Aquifer, North-Central Florida (USA), from Streamflow Data and Numerical Modeling. Hydrogeology Journal, 23(2): 305-317. https://doi.org/10.1007/s10040-014-1213-2
      Touhari, F., Meddi, M., Mehaiguene, M., et al., 2014. Hydrogeochemical Assessment of the Upper Cheliff Groundwater (North West Algeria). Environmental Earth Sciences, 73(7): 3043-3061. https://doi.org/10.1007/s12665-014-3598-6
      World Health Organization, 2008. Guidelines for Drinking-Water Quality, Second Edition. World Health Organization, Geneva. https://www.who.int/water_sanitation_health/dwq/2edvol1i.pdf
      Wu, P., Tang, C. Y., Zhu, L. J., et al., 2009. Hydrogeochemical Characteristics of Surface Water and Groundwater in the Karst Basin, Southwest China. Hydrological Processes, 23(14): 2012-2022. https://doi.org/10.1002/hyp.7332
      Wu, Y., Luo, Z. H., Luo, W., et al., 2018. Multiple Isotope Geochemistry and Hydrochemical Monitoring of Karst Water in a Rapidly Urbanized Region. Journal of Contaminant Hydrology, 218: 44-58. https://doi.org/10.1016/j.jconhyd.2018.10.009
      Yu, H.T., Ma, T., Deng, Y.M., et al., 2017.Hydrochemical Characteristics of Shallow Groundwater in Eastern Jianghan Plain. Earth Science, 42(5):685-692 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705004
      曹建华, 蒋忠诚, 袁道先, 等, 2017.岩溶动力系统与全球变化研究进展.中国地质, 44(5):874-900. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201705005
      李华, 文章, 谢先军, 等, 2017.贵阳市三桥地区岩溶地下水水化学特征及其演化规律.地球科学, 42(5):804-812. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705016
      刘小龙, 刘丛强, 李思亮, 等, 2010.碳与锶同位素在六盘水地下水研究中的应用.生态学杂志, 29(5):978-984. http://d.old.wanfangdata.com.cn/Periodical/stxzz201005024
      祁芙前, 2017.六盘水市主要地下水类型及特征.资源信息与工程, 32(3): 77-78. doi: 10.3969/j.issn.2095-5391.2017.03.038
      石碧, 2016.贵州省六盘水煤田煤炭资源潜力评价.煤质技术, (3):26-33. doi: 10.3969/j.issn.1007-7677.2016.03.010
      於昊天, 马腾, 邓娅敏, 等, 2017.江汉平原东部地区浅层地下水水化学特征.地球科学, 42(5):685-692. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705004
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (5530) PDF downloads(72) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return