• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 9
    Sep.  2019
    Turn off MathJax
    Article Contents
    Su Chunli, Zhang Ya, Ma Yanhua, Liu Wenbo, 2019. Hydrochemical Evolution Processes of Karst Groundwater in Guiyang City: Evidences from Hydrochemistry and 87Sr/86Sr Ratios. Earth Science, 44(9): 2829-2838. doi: 10.3799/dqkx.2019.214
    Citation: Su Chunli, Zhang Ya, Ma Yanhua, Liu Wenbo, 2019. Hydrochemical Evolution Processes of Karst Groundwater in Guiyang City: Evidences from Hydrochemistry and 87Sr/86Sr Ratios. Earth Science, 44(9): 2829-2838. doi: 10.3799/dqkx.2019.214

    Hydrochemical Evolution Processes of Karst Groundwater in Guiyang City: Evidences from Hydrochemistry and 87Sr/86Sr Ratios

    doi: 10.3799/dqkx.2019.214
    • Received Date: 2019-06-29
    • Publish Date: 2019-09-15
    • Study on hydrochemical characteristics and water-rock interaction is of great significance to ascertain the causes of groundwater pollution and the sustainable use of karst water. Hydrochemical components and types, ion ratios, strontium content, 87Sr/86Sr ratio and inverse hydrogeochemical modelling were employed to identify hydrochemical evolutional processes of karst groundwater in Guiyang City. The results show that the hydrochemical types of groundwater are mainly HCO3·SO4-Ca and HCO3-Ca·Mg, and the hydrochemical compositions of groundwater varied with time and space due to the dissolution/precipitation of different minerals. The mixing of surface water and groundwater has a certain influence on the hydrochemical characteristics of groundwater. Strontium isotope analysis and inverse hydrogeochemical modeling indicate that the hydrochemical characteristics of groundwater are mainly controlled by rock weathering. The dissolution-precipitation of carbonate dominated by calcite and dolomite as well as the dissolution of sulfate and halite are important processes to control the hydrochemical characteristics of groundwater in the study area, and are also affected by the hydrolysis of silicate minerals in the overlying porous aquifer.

       

    • loading
    • Capaccioni, B., Didero, M., Paletta, C., et al., 2001. Hydrogeochemistry of Groundwaters from Carbonate Formations with Basal Gypsiferous Layers: An Example from the Mt Catria-Mt Nerone Ridge (Northern Appennines, Italy). Journal of Hydrology, 253(1-4): 14-26. https://doi.org/10.1016/s0022-1694(01)00480-2
      Dang, S., 2015. Regulation of Karst Groundwater Utilization Risk and Resources Present Situation of Guiyang (Dissertation). Guizhou University, Guiyang (in Chinese with English abstract).
      Ding, Z.Y., Sun, N., Sun, Y.H., et al., 2015. Karst Groundwater Vulnerability and Pollution Risk Control in Guiyang City. Environmental Protection Science, 41(6): 104-112 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbhkx201506023
      Dogramaci, S. S., Herczeg, A. L., 2002. Strontium and Carbon Isotope Constraints on Carbonate-Solution Interactions and Inter-Aquifer Mixing in Groundwaters of the Semi-Arid Murray Basin, Australia. Journal of Hydrology, 262(1-4): 50-67. https://doi.org/10.1016/s0022-1694(02)00021-5
      Galy, A., France-Lanord, C., Derry, L. A., 1999. The Strontium Isotopic Budget of Himalayan Rivers in Nepal and Bangladesh. Geochimica et Cosmochimica Acta, 63(13-14): 1905-1925. https://doi.org/10.1016/s0016-7037(99)00081-2
      Jiang, Y.J., Yuan, D.X., 2014.Geochemical Tracers to Characterize Effects of Urbanization on Karst Groundwater Quality from Nanshan Underground River System, SW China. Quaternary Sciences, 34(5):1044-1053 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201405013
      Klaus, J. S., Hansen, B. T., Buapeng, S., 2007. 87Sr/86Sr Ratio: A Natural Tracer to Monitor Groundwater Flow Paths during Artificial Recharge in the Bangkok Area, Thailand. Hydrogeology Journal, 15(4): 745-758. https://doi.org/10.1007/s10040-007-0175-z
      Lang, Y.C., 2005. Geochemical Characteristics of Cycling of Substances in Karstic Groundwater System: A Case Study from Guiyang and Zunyi Cities, China (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract).
      Lang, Y.C., Liu, C.Q., Han, G.L., et al., 2005.Characterization of Water-Rock Interaction and Pollution of Karstic Hydrological System: A Study on Water Chemistry and Sr Isotope of Surface/Ground Water of the Guiyang Area. Quaternary Sciences, 25(5):655-662 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200505014.htm
      Li, C.S., Wu, X.C., Sun, B., et al., 2018. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji'nan. Earth Science, 43(S1):313-325 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1027
      Li, H., Wen, Z., Xie, X.J., et al., 2017. Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City. Earth Science, 42(5):804-812 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705016
      Liu, W.J., Yuan, X.M., Zhang, Y., et al., 2018. Hydrochemical Characteristics and Evolution of Karst Groundwater in Guiyang City. Geological Science and Technology Information, 37(6):245-251 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201806031.htm
      Lü, Y.X., Hu, W., Yang, Y., et al., 2019. Research Progress of Hydrological Cycle in Karst Critical Zone. Advances in Water Science, 30(1):123-138 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz201901013
      Ma, Y.H., 2017. Process of Hydrochemical Evolution and Contamination of Karst Groundwater Systems in Guiyang City, Southwest China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Moral, F., Cruz-Sanjulián, J. J., Olías, M., 2008. Geochemical Evolution of Groundwater in the Carbonate Aquifers of Sierra de Segura (Betic Cordillera, Southern Spain). Journal of Hydrology, 360(1-4): 281-296. https://doi.org/10.1016/j.jhydrol.2008.07.012
      Pu, J. B., Yuan, D. X., Zhang, C., et al., 2012. Identifying the Sources of Solutes in Karst Groundwater in Chongqing, China: A Combined Sulfate and Strontium Isotope Approach. Acta Geologica Sinica (English Edition), 86(4): 980-992. https://doi.org/10.1111/j.1755-6724.2012.00722.x
      Wang, J.Y., Wang, J.L., Jin, M.G., 2017. Hydrochemical Characteristics and Formation Causes of Karst Water in Jinan Spring Catchment. Earth Science, 42(5): 821-831 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705018
      Wang, Y. X., Guo, Q. H., Su, C. L., et al., 2006. Strontium Isotope Characterization and Major Ion Geochemistry of Karst Water Flow, Shentou, Northern China. Journal of Hydrology, 328(3-4): 592-603. https://doi.org/10.1016/j.jhydrol.2006.01.006
      Wen, B., Zhou, J. W., Zhou, A. G., et al., 2016. Sources, Migration and Transformation of Antimony Contamination in the Water Environment of Xikuangshan, China: Evidence from Geochemical and Stable Isotope (S, Sr) Signatures. Science of the Total Environment, 569-570: 114-122. https://doi.org/10.1016/j.scitotenv.2016.05.124
      Xu, S., Li, S.L., Zhong, J., et al., 2018. Hydrochemical Characteristics and Chemical Weathering Processes in Chishui River Basin. Chinese Journal of Ecology, 37(3):667-678 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/stxzz201803007
      Yang, X.L., Zeng, Q., Su, Z.Z., et al., 2010. Pollution Condition and Prevention of Groundwater Pollution in Guiyang City. Guizhou Geology, 27(4):291-295 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzdz201004012
      Zha, X.F., Wu, P., Zhu, L.J., et al., 2008. Sustainable Development and Utilization and Measures of Karst Groundwater in Guiyang City. Environmental Protection and Technology, 14(1):27-30 (in Chinese with English abstract).
      Zhai, Y.Z., Wang, J.S., Zuo, R., et al., 2011. Strontium Isotopic Tracing of Water-Rock Interaction in Quaternary Aquifer in Beijing Plain. Science & Technology Review, 29(6):17-20 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201106006
      Zhao, J.T., Zhou, J.L., Gao, Y.X., et al., 2016.Spatial- Temporal Evolution of Total Dissolved Solids of Groundwater in Plain Area of Yanqi Basin, Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 32(5):120-125 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201605017
      党爽, 2015.贵阳地区岩溶地下水资源现状及开发利用风险评价(硕士学位论文).贵阳: 贵州大学. http://cdmd.cnki.com.cn/Article/CDMD-10657-1015910972.htm
      丁贞玉, 孙宁, 孙运海, 等, 2015.贵阳市岩溶地下水污染风险与防控监管.环境保护科学, 41(6): 104-112. doi: 10.3969/j.issn.1004-6216.2015.06.023
      蒋勇军, 袁道先, 2014.城市发展对岩溶地下水质影响的地球化学示踪——以重庆南山老龙洞地下河系统为例.第四纪研究, 34(5):1044-1053. http://d.old.wanfangdata.com.cn/Conference/8868898
      郎赟超, 2005.喀斯特地下水文系统物质循环的地球化学特征——以贵阳市和遵义市为例(博士学位论文).贵阳: 中国科学院地球化学研究所. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y856107
      郎赟超, 刘丛强, 韩贵琳, 等, 2005.贵阳市区地表/地下水化学与锶同位素研究.第四纪研究, 25(5):655-662. doi: 10.3321/j.issn:1001-7410.2005.05.015
      李常锁, 武显仓, 孙斌, 等, 2018.济南北部地热水水化学特征及其形成机理.地球科学, 43(S1):313-325. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1027
      李华, 文章, 谢先军, 等, 2017.贵阳市三桥地区岩溶地下水水化学特征及其演化规律.地球科学, 42(5):804-812. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705016
      刘伟江, 袁祥美, 张雅, 等, 2018.贵阳市岩溶地下水水化学特征及演化过程分析.地质科技情报, 37(6):245-251. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb201806031
      吕玉香, 胡伟, 杨琰, 等, 2019.岩溶关键带水循环过程研究进展.水科学进展, 30(1):123-138. http://d.old.wanfangdata.com.cn/Periodical/skxjz201901013
      马燕华, 2017.西南岩溶地区地下水系统水化学演化过程及污染成因研究——以贵阳市为例(硕士学位论文).武汉: 中国地质大学.
      王珺瑜, 王家乐, 靳孟贵, 2017.济南泉域岩溶水水化学特征及其成因.地球科学, 42(5): 821-831. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705018
      徐森, 李思亮, 钟君, 等, 2018.赤水河流域水化学特征与岩石风化机制.生态学杂志, 37(3):667-678. http://d.old.wanfangdata.com.cn/Periodical/stxzz201803007
      杨秀丽, 曾群, 苏泽志, 等, 2010.贵阳市地下水污染现状评价及防治对策.贵州地质, 27(4):291-295. doi: 10.3969/j.issn.1000-5943.2010.04.012
      查学芳, 吴攀, 朱立军, 等, 2008.贵阳市岩溶地下水可持续开发利用与对策.环保科技, 14(1):27-30. doi: 10.3969/j.issn.1674-0254.2008.01.006
      翟远征, 王金生, 左锐, 等, 2011.北京平原区第四系含水层中水-岩作用的锶同位素示踪.科技导报, 29(6):17-20. doi: 10.3981/j.issn.1000-7857.2011.06.001
      赵江涛, 周金龙, 高业新, 等, 2016.新疆焉耆盆地平原区地下水溶解性总固体时空演化.农业工程学报, 32(5):120-125. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201605017
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(4)

      Article views (6072) PDF downloads(178) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return