• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 1
    Jan.  2021
    Turn off MathJax
    Article Contents
    Liu Bingchen, Qi Yong'an, Dai Mingyue, Bai Wanbei, Fan Yuchao, Qing Guoshuai, 2021. Benthic Ecosystem Engineer after the Cambrian Explosion: An Example from Henan Province. Earth Science, 46(1): 148-161. doi: 10.3799/dqkx.2019.245
    Citation: Liu Bingchen, Qi Yong'an, Dai Mingyue, Bai Wanbei, Fan Yuchao, Qing Guoshuai, 2021. Benthic Ecosystem Engineer after the Cambrian Explosion: An Example from Henan Province. Earth Science, 46(1): 148-161. doi: 10.3799/dqkx.2019.245

    Benthic Ecosystem Engineer after the Cambrian Explosion: An Example from Henan Province

    doi: 10.3799/dqkx.2019.245
    • Received Date: 2019-09-28
    • Publish Date: 2021-01-15
    • The bioturbators, which are ecosystem engineers, act on the interaction between sediments and water (the circulation, migration and storage of nutrients) through the reworking of sediments directly. As a result, they have an significant impact on benthic ecosystems engineering. The trace fossils provide evidence for studying the evolution of ecosystem engineers and assessing the impact of engineers on ecosystem engineering after the Cambrian explosion, as they provide records for activities of benthic organism. This paper studies benthic ecosystem engineers from three aspects-functional group, tiering and biological irrigation, by applying the modern biology concept of 'ecosystem engineering impact'. Statistics on the trace fossils of eight Cambrian sections in Henan Province show that the functional group types of the ecosystem engineers have changed from biodiffusive bioturbators to upward/downward conveyors, infaunal tier has gotten deeper, biological irrigation has became more common, and the ecosystem engineering impact has been increasing from Stage 3 to Drumian. But the type and structure of trace fossils have no changes, and the ecosystem engineering impact tends to be stable from Drumian to the Stage 10.This means that the behavioral strategy of benthic ecosystem engineer sevolve and innovate obviously during the time from the ending of the Cambrian Explosion to Drumian, by expanding ecospaces and creating new habitats for other macrobiotic and microbiotic organisms. In a word, these ecosystem engineers played an important role in the Cambrian marine ecosystem.

       

    • loading
    • Aller, R. C., 1982. The Effects of Macro Benthos on Chemical Properties of Marine Sediment and Overlying Water. In: McCall, P. L., Tevesz, M. J. S., eds., Animal-Sediment Relations. Journal of Geobiology, New York, 53-102.
      Allison, P. A., Wright, V. P., 2005. Switching off the Carbonate Factory: A-Tidality, Stratification and Brackish Wedges in Epeiric Seas. Sedimentary Geology, 179(3/4): 175-184. https://doi.org/10.1016/j.sedgeo.2005.05.004
      Ausich, W. I., Bottjer, D. J., 1982. Tiering in Suspension-Feeding Communities on Soft Substrata Throughout the Phanerozoic. Science, 216(4542): 173-174. https://doi.org/10.1126/science.216.4542.173
      Bai, W.B., Qi, Y.A., Guo, Y.H., et al., 2018. Storm Deposits and Relevant Trace Fossils from the Cambrian Series 2 Xinji Formation in Lushan Area, Henan Province. Journal of Palaeogeography, 20(3): 365-376(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201803002.htm
      Bottjer, D. J., Ausich, W. I., 1986. Phanerozoic Development of Tiering in Soft Substrata Suspension-Feeding Communities. Paleobiology, 12(4): 400-420. https://doi.org/10.1017/s0094837300003134
      Buatois, L. A., Mángano, M. G., 2012. An Early Cambrian Shallow-Marine Ichnofauna from the Puncoviscana Formation of Northwest Argentina: The Interplay between Sophisticated Feeding Behaviors, Matgrounds and Sea-Level Changes. Journal of Paleontology, 86(1): 7-18. https://doi.org/10.1666/11-001.1
      Buatois, L. A., Narbonne, G. M., Mángano, M. G., et al., 2014. Ediacaran Matground Ecology Persisted into the Earliest Cambrian. Nature Communications, 5(1): 35-44. https://doi.org/10.1038/ncomms4544
      Bush, A. M., Bambach, R. K., Daley, G. M., 2007. Changes in Theoretical Ecospace Utilization in Marine Fossil Assemblages between the Mid-Paleozoic and Late Cenozoic. Paleobiology, 33(1): 76-97. https://doi.org/10.1666/06013.1
      Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6(1): 8142. https://doi.org/10.1038/ncomms8142
      Chen, Z., Chen, X., Zhou, C. M., et al., 2018. Late Ediacaran Trackways Produced by Bilaterian Animals with Paired Appendages. Science Advances, 4(6): 6691. https://doi.org/10.1126/sciadv.aao6691
      Collette, J. H., Hagadorn, J. W., 2010. Early Evolution of Phyllocarid Arthropods: Phylogeny and Systematics of Cambrian-Devonian Archaeostracans. Journal of Paleontology, 84(5): 795-820. https://doi.org/10.1666/09-092.1
      Dornbos, S. Q., 2006. Evolutionary Palaeoecology of Early Epifaunal Echinoderms: Response to Increasing Bioturbation Levels during the Cambrian Radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 237(2/3/4): 225-239. https://doi.org/10.1016/j.palaeo.2005.11.021
      Fang, L., Liu, J.B., Zhan, R.B., 2012. Temporal Distribution of Piperocks in Cambrian and Ordovician: A Coevolutionary Process with Changes of Paleoenvironment. Scientia Sinica Terrae, 42(1): 117-129 (in Chinese with English abstract). doi: 10.1360/zd-2012-42-1-117
      François, F., Gerino, M., Stora, G., et al., 2002. Functional Approach to Sediment Reworking by Gallery-Forming Macrobenthic Organisms: Modeling and Application with the Polychaete Nereis Diversicolor. Marine Ecology Progress Series, 229: 127-136. https://doi.org/10.3354/meps229127
      Herringshaw, L. G., Callow, R. H. T., McIlroy, D., 2017. Engineering the Cambrian Explosion: The Earliest Bioturbators as Ecosystem Engineers. Geological Society, London, Special Publications, 448(1): 369-382. https://doi.org/10.1144/sp448.18
      Herringshaw, L. G., McIlroy, D., 2013. Bioinfiltration: Irrigation-Driven Transport of Clay Particles through Bioturbated Sediments. Journal of Sedimentary Research, 83(6): 443-450. https://doi.org/10.2110/jsr.2013.40
      Kristensen, E., Kostka, J. E., 2005. Macro Faunal Burrows and Irrigation in Marine Sediment: Microbiological and Biogeochemical Interactions. In: Kristensen, E., Haese, R., Kostka, J. E., eds., Interactions Between Macro- and Micro-Organisms in Marine Sediments. Coastal and Estuarine Studies, Washington, 125-157.
      Li, D., Qi, Y., Dai, M.Y., et al., 2016. Firm-ground Trace Fossils in the Mantou Formation(Cambrian Series 2 and 3), Western Henan, Central China. Acta Palaeontologica Sinica, 55(2): 170-180 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX201602004.htm
      Mángano, M. G., Buatois, L. A., 2014. Decoupling of Body-Plan Diversification and Ecological Structuring during the Ediacaran-Cambrian Transition: Evolutionary and Geobiological Feedbacks. Proceedings of the Royal Society B: Biological Sciences, 281(1780): 20140038. https://doi.org/10.1098/rspb.2014.0038
      McIlroy, D., Garton, M., 2010. Realistic Interpretation of Ichnofabrics and Palaeoecology of the Pipe-Rock Biotope. Lethaia, 43(3):420-426. https://doi.org/10.1111/j.1502-3931.2009.00199.x
      Mermillod-Blondin, F., Rosenberg, R., 2006. Ecosystem Engineering: The Impact of Bioturbation on Biogeochemical Processes in Marine and Freshwater Benthic Habitats. Aquatic Sciences, 68(4): 434-442. https://doi.org/10.1007/s00027-006-0858-x
      Meyer, M., Xiao, S. H., Gill, B. C., et al., 2014. Interactions between Ediacaran Animals and Microbial Mats: Insights from Lamonte Trevallis, a New Trace Fossil from the Dengying Formation of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 62-74. https://doi.org/10.1016/j.palaeo.2013.12.026
      Minter, N. J., Buatois, L. A., Mángano, M. G., 2016.The Conceptual and Methodological Tools of Ichnology. In: Mángano, M. G., Buatois L A., eds., The Trace-Fossil Record of Major Evolutionary Events. Dordrecht: Springer Science, Business Media, 1-26.
      Muscente, A. D., Boag, T. H., Bykova, N., et al., 2018. Environmental Disturbance, Resource Availability, and Biologic Turnover at the Dawn of Animal Life. Earth-Science Reviews, 177: 248-264. https://doi.org/10.1016/j.earscirev.2017.11.019
      Qi, Y.A., Wang, M., Li, D., et al., 2012a. Cambrian Substrate Revolution: From Matgrounds to Bioturbated Mixgrounds. Journal of Henan Polytechnic University, , 31(2): 159-164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGXB201202009.htm
      Qi, Y.A., Meng, Y., Dai, M.Y., et al., 2014. Biogenic Leopard Patch Structures from the Zhushadong Formation (Cambrian Series 2), Dengfeng Area, Western Henan. Geological Science and Technology Information, 33(5): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201405001.htm
      Qi, Y.A., Li, D., Dai, M.Y., et al., 2013. Opportunistic Trace Fossils from the Changhia Formation (Third Series, Cambrian), Western Henan. Acta Palaeontologica Sinica, 52(1): 80-85 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GSWX201301008.htm
      Qi, Y.A., Wang, M., Li, D., et al., 2012b. Ichnofabrics and Their Sedimentary Environments from the Lower Part of the Middle Cambrian Zhangxia Formation, Longmen Area, Luoyang City. Earth Science, 37(4): 693-706 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204009.htm
      Seilacher, A., 1999. Biomat-Related Lifestyles in the Precambrian. Palaios, 14(1):86. https://doi.org/10.2307/3515363
      Tarhan, L. G., Droser, M. L., Planavsky, N. J., et al., 2015. Protracted Development of Bioturbation through the Early Palaeozoic Era. Nature Geoscience, 8(11): 865-869. https://doi.org/10.1038/ngeo2537
      Tyson, R. V., Pearson, T. H., 1991. Modern and Ancient Continental Shelf Anoxia: An Overview. Geological Society, London, Special Publications, 58(1): 1-24. https://doi.org/10.1144/gsl.sp.1991.058.01.01
      Vannier, J., Calandra, I., Gaillard, C., et al., 2010. Priapulid Worms: Pioneer Horizontal Burrowers at the Precambrian-Cambrian Boundary. Geology, 38(8): 711-714. https://doi.org/10.1130/g30829.1
      Vannier, J., Steiner, M., Renvoisé, E., et al., 2007. Early Cambrian Origin of Modern Food Webs: Evidence from Predator Arrow Worms. Proceedings of the Royal Society B: Biological Sciences, 274(1610): 627-633. https://doi.org/10.1098/rspb.2006.3761
      Williams, M., Vandenbroucke, T. R. A., Perrier, V., et al., 2015. A Link in the Chain of the Cambrian Zooplankton: Bradoriid Arthropods Invade the Water Column. Geological Magazine, 152(5): 923-934. https://doi.org/10.1017/s0016756815000059
      Yang, S.P., Chen, Z.J, 1996. Middle Cambrian Hsvchuangian Trace Fossils from Dengfeng, Henan Province, and Their Environmental Significance. Regional Geology of China, (2): 143-149, T002 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD602.006.htm
      Yang, W.T., Li, K.N., Wang, M., et al., 2017. Schaubcylindrichnus Heberti from the Zhangxia Formation (Cambrian Series 3) in Henan Province and Its Ethological Characteristics. Acta Palaeontologica Sinica, 56(3): 312-321 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX201703005.htm
      Zamora, S., Deline, B., Javier Álvaro, J., et al., 2017. The Cambrian Substrate Revolution and the Early Evolution of Attachment in Suspension-Feeding Echinoderms. Earth-Science Reviews, 171: 478-491. https://doi.org/10.1016/j.earscirev.2017.06.018
      Zhang, L. J., Qi, Y. A., Buatois, L. A., et al., 2017. The Impact of Deep-Tier Burrow Systems in Sediment Mixing and Ecosystem Engineering in Early Cambrian Carbonate Settings. Scientific Reports, 7(1): 45773. https://doi.org/10.1038/srep45773
      Zhao, X.K., Shi, X.Y., Wang, X.Q., et al., 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11): 3873-3890 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811006.htm
      白万备, 齐永安, 郭英海, 等, 2018.河南鲁山寒武系第二统辛集组风暴沉积及其相关的遗迹化石.古地理学报, 20(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201803002.htm
      房亮, 刘建波, 詹仁斌, 2012.寒武纪-奥陶纪管状岩的盛衰及其与环境演变的协同.中国科学(地球科学), 42(1): 117-129. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201201014.htm
      李妲, 齐永安, 代明月, 等, 2016.豫西寒武系第二、三统馒头组固底控制的遗迹化石.古生物学报, 55(2): 170-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201602004.htm
      齐永安, 李妲, 代明月, 等, 2013.豫西寒武系第三统张夏组鲕粒灰岩中机会生物留下的遗迹化石.古生物学报, 52(1): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201301008.htm
      齐永安, 孟瑶, 代明月, 等, 2014.豫西登封地区寒武系第二统朱砂洞组生物成因的豹斑构造.地质科技情报, 33(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405001.htm
      齐永安, 王敏, 李妲, 等, 2012a.寒武纪底质革命:从微生物席底到生物扰动混合底.河南理工大学学报(自然科学版), 31(2): 159-164. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201202009.htm
      齐永安, 王敏, 李妲, 等, 2012b.洛阳龙门地区中寒武统张夏组下部遗迹组构及其沉积环境.地球科学, 37(4): 693-706. http://www.earth-science.net/article/id/2275
      杨式溥, 陈战杰, 1996.河南登封中寒武世徐庄组遗迹化石及其沉积环境.中国区域地质, (2): 143-149, T002. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD602.006.htm
      杨文涛, 李凯楠, 王敏, 等, 2017.豫西寒武系第三统张夏组Schaubc ylindrichnus heberti及其生态学特征.古生物学报, 56(3): 312-321. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201703005.htm
      赵相宽, 史晓颖, 王新强, 等, 2018.寒武纪早期海洋阶段性氧化驱动早期后生动物多样化进程.地球科学, 43(11):3873-3890. doi: 10.3799/dqkx.2018.143
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (1496) PDF downloads(72) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return