• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 1
    Jan.  2021
    Turn off MathJax
    Article Contents
    Li Dongqing, Wang Yun, Sun Lixia, 2021. Calculating Rotational Components of Ground Motions by Finite Difference Method. Earth Science, 46(1): 369-380. doi: 10.3799/dqkx.2019.265
    Citation: Li Dongqing, Wang Yun, Sun Lixia, 2021. Calculating Rotational Components of Ground Motions by Finite Difference Method. Earth Science, 46(1): 369-380. doi: 10.3799/dqkx.2019.265

    Calculating Rotational Components of Ground Motions by Finite Difference Method

    doi: 10.3799/dqkx.2019.265
    • Received Date: 2019-10-21
    • Publish Date: 2021-01-15
    • Rotational seismology is a new subject to study the motions of the earth's medium caused by earthquakes, blasting and environmental vibration in an all-round way. The study of rotational components of ground motion has a long history. However, there is no high-precision rotational component seismograph, so the study of rotational motions is usually limited to theoretical aspects. As an alternative method of calculating rotational components by translational components, the finite difference method is relatively mature in theoretical research, but its application in practical data is still less. Based on the full investigation of the research that studying the rotational motions, the finite difference method is tested and analyzed by using the simulated data and the recording explosive source data. By comparing the waveforms, amplitude spectra and phase spectra of the rotational components calculated by the finite difference method with thoserecorded, it is concluded that the finite difference method can be used as an effective alternative to calculate the horizontal rotational components (RX, RY) within an error allowable range. At the same time, in view of the high frequency characteristics of the explosive source and the dense array, we have improved the finite difference method and proposed a higher precision finite difference method for calculating rotational components.

       

    • loading
    • Aki, K, Richards, P. G., 2002.Quantitative Seismology: Theory and Methods, 2nd Ed., Sausalito. University Science Books, California.
      Barak, O., Herkenhoff, F., Dash, R., et al., 2014. Six-Component Seismic Land Data Acquired with Geophones and Rotation Sensors:Wave-Mode Selectivity by Application of Multicomponent Polarization Filtering. The Leading Edge, 33(11):1224-1232. https://doi.org/10.1190/tle33111224.1
      Huang, B. S., 2003. Ground Rotational Motions of the 1999 Chi-Chi, Taiwan Earthquake as Inferred from Dense Array Observations. Geophysical Research Letters, 30(6):1307-1310. https://doi.org/10.1029/2002gl015157
      Lai, X.L., Sun, Y., 2017. Three Component Rotational Ground Motion Obtained from Explosive Source Data. Earth Science, 42(4):645-651 (in Chinese with English abstract). http://www.researchgate.net/publication/318055441_Three_Component_Rotational_Ground_Motion_Obtained_from_Explosive_Source_Data
      Langston, C. A., Chiu, S. C. C., Lawrence, Z., et al., 2009a. Array Observations of Microseismic Noise and the Nature of H/V in the Mississippi Embayment. Bulletin of the Seismological Society of America, 99(5):2893-2911. https://doi.org/10.1785/0120080189
      Langston, C. A., Lee, W. H. K., Lin, C. J., et al., 2009b. Seismic-Wave Strain, Rotation, and Gradiometry for the 4 March 2008 TAIGER Explosions. Bulletin of the Seismological Society of America, 99(2B):1287-1301. https://doi.org/10.1785/0120080200
      Lin, C. J., Liu, C. C., Lee, W. H. K., 2009. Recording Rotational and Translational Ground Motions of Two TAIGER Explosions in Northeastern Taiwan on 4 March 2008. Bulletin of the Seismological Society of America, 99(2B):1237-1250. https://doi.org/10.1785/0120080176
      Liu, C. C., Huang, B. S., Lee, W. H. K., et al., 2009. Observing Rotational and Translational Ground Motions at the HGSD Station in Taiwan from 2007 to 2008. Bulletin of the Seismological Society of America, 99(2B):1228-1236. https://doi.org/10.1785/0120080156
      Richter, C.F., 1958. Elementary Seismology W. H. Freeman, San Franciso, California.Tellus, 11(2):257-258. http://www.mendeley.com/catalog/elementary-seismology/
      Spudich, P., Fletcher, J. B., 2008. Observation and Prediction of Dynamic Ground Strains, Tilts, and Torsions Caused by the Mw 6.0 2004 Parkfield, California, Earthquake and Aftershocks, Derived from UPSAR Array Observations. Bulletin of the Seismological Society of America, 98(4):1898-1914. https://doi.org/10.1785/0120070157
      Spudich, P., Steck, L. K., Hellweg, M., et al., 1995. Transient Stresses at Parkfield, California, Produced by The M7.4 Landers Earthquake of June 28, 1992:Observations from the UPSAR Dense Seismograph Array. Journal of Geophysical Research:Solid Earth, 100(B1):675-690. https://doi.org/10.1029/94jb02477
      Sun, L., Zhang, Z., Wang, Y., 2018. Six-Component Elastic-Wave Simulation and Analysis. EGU General Assembly Conference Abstracts, London, 14930.
      Suryanto, W., Igel, H., Wassermann, J., et al., 2006. First Comparison of Array-Derived Rotational Ground Motions with Direct Ring Laser Measurements. Bulletin of the Seismological Society of America, 96(6):2059-2071. https://doi.org/10.1785/0120060004
      Wan, T.F., 2019. A Review of Geotectonics. Earth Science, 44(5):1526-1536 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905010.htm
      Wang, Y., Yang, D.H., Yin, C.C., et al., 2017. Anisotropic Geophysics and Vector Field. Chinese Science Bulletin, 62(23):2595-2605 (in Chinese with English abstract). doi: 10.1360/N972016-01114
      William. H. K., Huang, B. S., Langston, C. A., et al., 2009. Review:Progress in Rotational Ground-Motion Observations from Explosions and Local Earthquakes in Taiwan. Bulletin of the Seismological Society of America, 99(2B):958-967. https://doi.org/10.1785/0120080205
      Xu, X.W., Bai, L.X., Wei, L.M., et al., 2019. Discussion on Initiation Time of the Latest Tectonic Movement in Break-Up Region of the North China Craton. Earth Science, 44(5):1647-1660 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905018.htm
      Zhang, P., Liu, W.Y., Yuan, Y., et al., 2018. Review of the Application of Rotational Motions in Seismology. Earthquake Research in China, 34(1):1-13 (in Chinese with English abstract). http://www.cqvip.com/QK/84216X/20184/7001114196.html
      赖晓玲, 孙译, 2017.利用爆炸震源资料获得三分量旋转地震动.地球科学, 42(4):645-651. doi: 10.3799/dqkx.2017.052
      王赟, 杨顶辉, 殷长春, 等, 2017.各向异性地球物理与矢量场.科学通报, 62(23):2595-2605. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201723007.htm
      万天丰, 2019.论大地构造学的发展.地球科学, 44(5):1526-1536. doi: 10.3799/dqkx.2019.033
      徐锡伟, 白鸾曦, 魏雷鸣, 等, 2019.华北克拉通破坏区最新构造运动起始时间讨论.地球科学, 44(5):1647-1660. doi: 10.3799/dqkx.2019.978
      张佩, 刘文义, 袁艺, 等, 2018.旋转运动在地震学中的应用概述.中国地震, 34(1):1-13. doi: 10.3969/j.issn.1001-4683.2018.01.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(10)

      Article views (1817) PDF downloads(61) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return