• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 2
    Feb.  2021
    Turn off MathJax
    Article Contents
    Peng Zhenran, Hu Zhengwang, Wang Linsong, Chen Chao, Fu Zhengyan, 2021. Spatio-Temporal Characteristics of Ice Sheet Melting in Greenland and Contributions to Sea Level Rise from 2003 to 2015. Earth Science, 46(2): 743-758. doi: 10.3799/dqkx.2020.042
    Citation: Peng Zhenran, Hu Zhengwang, Wang Linsong, Chen Chao, Fu Zhengyan, 2021. Spatio-Temporal Characteristics of Ice Sheet Melting in Greenland and Contributions to Sea Level Rise from 2003 to 2015. Earth Science, 46(2): 743-758. doi: 10.3799/dqkx.2020.042

    Spatio-Temporal Characteristics of Ice Sheet Melting in Greenland and Contributions to Sea Level Rise from 2003 to 2015

    doi: 10.3799/dqkx.2020.042
    • Received Date: 2019-11-27
    • Publish Date: 2021-02-15
    • Studing the abnormal mass change rate of Greenland ice sheet (GrIS) can help us understand the drivers of sea level change due to the abnormal climate events. Therefore, in this paper it focuses on the anomalous rate of GrIS mass change in 2010-2012 and its contributions to SLF and relative sea level (RSL) changes. By combining the 2003-2015 GRACE monthly gravity field data and surface mass balance (SMB) data, the spatio-temporal distributions of the mass change of the six extended sub-basins are estimated based on the mascon fitting and the grid scale factors. Afterwards, it obtains the spatial distribution of the SLF based on the sea level equation (SLE) and considering the self-attraction and loading effect. The results indicate that during 2003-2015, the total mass change rates of GrIS were -288±7 Gt/a and -275±1 Gt/a as derived from scaled GRACE and SMB results respectively; and the trend increased to -456±30 Gt/a and -464±38 Gt/a correspondingly during 2010-2012, when the northwest coast and the southeast coast showed a large number of melting. And the contributions of GrIS to sea level showed an inverted "V" type (i.e., first rise and then fall), while the global mean sea level change showed a distinct positive "V" type (i.e., first drop and then rise). Between 2003 and 2015, GrIS contributed approximately 31% of total terrestrial water reserves (converted to sea level rise), and a global average RSL increased by 0.07 cm/a, while the contribution to the RSL of Scandinavia and the Nordic region was -0.6 cm/a. In addition, the far-field RSL rising rate due to the melting of GrIS is nearly 30% higher than the global average. Meanwhile, in this paper it proves that the far-filed peak increase is less dependent on the accurate pattern of the self-attraction and loading.

       

    • loading
    • A, G. , Wahr, J. , Zhong, S. J. , 2013. Computations of the Viscoelastic Response of a 3-D Compressible Earth to Surface Loading: An Application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2): 557-572. https://doi.org/10.1093/gji/ggs030
      Adhikari, S. , Ivins, E. R. , Larour, E. , 2017. Mass Transport Waves Amplified by Intense Greenland Melt and Detected in Solid Earth Deformation. Geophysical Research Letters, 44(10): 4965-4975. https://doi.org/10.1002/2017gl073478
      Bamber, J. L. , Layberry, R. L. , Gogineni, S. P. , 2001. A New Ice Thickness and Bed Data Set for the Greenland Ice Sheet: 1. Measurement, Data Reduction, and Errors. Journal of Geophysical Research: Atmospheres, 106(D24): 33773-33780. https://doi.org/10.1029/2001jd900054
      Bamber, J. L. , Riva, R. E. M. , Vermeersen, B. L. A. , et al. , 2009. Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet. Science, 324(5929): 901-903. https://doi.org/10.1126/science.1169335
      Beckley, B. D. , Callahan, P. S. , Hancock III, D. W. , et al. , 2017. On the "Cal-Mode" Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series. Journal of Geophysical Research: Oceans, 122(11): 8371-8384. https://doi.org/10.1002/2017jc013090
      Boening, C. , Willis, J. K. , Landerer, F. W. , et al. , 2012. The 2011 La Niña: So Strong, the Oceans Fell. Geophysical Research Letters, 39(19): L19602. https://doi.org/10.1029/2012gl053055
      Bolch, T. , Sandberg Sørensen, L. , Simonsen, S. B. , et al. , 2013. Mass Loss of Greenland's Glaciers and Ice Caps 2003-2008 Revealed from ICESat Laser Altimetry Data. Geophysical Research Letters, 40(5): 875-881. https://doi.org/10.1002/grl.50270
      Box, J. E. , Fettweis, X. , Stroeve, J. , et al. , 2012. Greenland Ice Sheet Albedo Feedback: Thermodynamics and Atmospheric Drivers. The Cryosphere, 6(4): 821-839. https://doi.org/10.5194/tc-6-821-2012
      Chen, G. D. , Zhang, S. J. , 2019. Elevation and Volume Change Determination of Greenland Ice Sheet Based on ICESat Observations. Chinese Journal of Geophysics, 62(7): 2417-2428(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201907006.htm
      Cheng, M. K. , Tapley, B. D. , Ries, J. C. , 2013. Deceleration in the Earth's Oblateness. Journal of Geophysical Research: Solid Earth, 118(2): 740-747. https://doi.org/10.1002/jgrb.50058
      Dziewonski, A. M. , Anderson, D. L. , 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356. https://doi.org/10.1016/0031-9201(81)90046-7
      Ettema, J. , van den Broeke, M. R. , van Meijgaard, E. , et al. , 2009. Higher Surface Mass Balance of the Greenland Ice Sheet Revealed by High-Resolution Climate Modeling. Geophysical Research Letters, 36(12): L12501. https://doi.org/10.1029/2009gl038110
      Farrell, W. E. , 1972. Deformation of the Earth by Surface Loads. Reviews of Geophysics, 10(3): 761-797. https://doi.org/10.1029/rg010i003p00761
      Farrell, W. E. , Clark, J. A. , 1976. On Postglacial Sea Level. Geophysical Journal International, 46(3): 647-667. https://doi.org/10.1111/j.1365-246x.1976.tb01252.x
      Fasullo, J. T. , Boening, C. , Landerer, F. W. , et al. , 2013. Australia's Unique Influence on Global Sea Level in 2010-2011. Geophysical Research Letters, 40(16): 4368-4373. https://doi.org/10.1002/grl.50834
      Forsberg, R. , Sørensen, L. , Simonsen, S. , 2017. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surveys in Geophysics, 38: 89-104. https://doi.org/10.1007/s10712-016-9398-7
      Gardner, A. S. , Moholdt, G. , Cogley, J. G. , et al. , 2013. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 340(6134): 852-857. https://doi.org/10.1126/science.1234532
      Hall, D. K. , Comiso, J. C. , DiGirolamo, N. E. , et al. , 2013. Variability in the Surface Temperature and Melt Extent of the Greenland Ice Sheet from MODIS. Geophysical Research Letters, 40(10): 2114-2120. https://doi.org/10.1002/grl.50240
      Hanna, E. , Huybrechts, P. , Cappelen, J. , et al. , 2011. Greenland Ice Sheet Surface Mass Balance 1870 to 2010 Based on Twentieth Century Reanalysis, and Links with Global Climate Forcing. Journal of Geophysical Research: Atmospheres, 116(D24): D24121. https://doi.org/10.1029/2011jd016387
      Howat, I. M. , Smith, B. E. , Joughin, I. , et al. , 2008. Rates of Southeast Greenland Ice Volume Loss from Combined ICESat and ASTER Observations. Geophysical Research Letters, 35(17): L17505. https://doi.org/10.1029/2008gl034496
      Hurkmans, R. T. W. L. , Bamber, J. L. , Davis, C. H. , et al. , 2014. Time-Evolving Mass Loss of the Greenland Ice Sheet from Satellite Altimetry. The Cryosphere, 8: 1725-1740. https://doi.org/10.5194/tc-8-1725-2014
      Jacob, T. , Wahr, J. , Pfeffer, W. T. , et al. , 2012. Recent Contributions of Glaciers and Ice Caps to Sea Level Rise. Nature, 482(7386): 514-518. https://doi.org/10.1038/nature10847
      Jentzsch, G., 1997. Earth Tides and Ocean Tidal Loading. In: Wilhelm, H., Zürn, W., Wenzel, H. G., eds., Tidal Phenomena. Springer, Heidelberg.
      Khan, S. A. , Wahr, J. , Bevis, M. , et al. , 2010. Spread of Ice Mass Loss into Northwest Greenland Observed by GRACE and GPS. Geophysical Research Letters, 37(6): L06501. https://doi.org/10.1029/2010gl042460
      Liu, L. , Khan, S. A. , van Dam, T. , et al. , 2017. Annual Variations in GPS-Measured Vertical Displacements near Upernavik Isstrøm (Greenland) and Contributions from Surface Mass Loading. Journal of Geophysical Research: Solid Earth, 122(1): 677-691. https://doi.org/10.1002/2016jb013494
      Lythe, M. B. , Vaughan, D. G. , 2001. BEDMAP: A New Ice Thickness and Subglacial Topographic Model of Antarctica. Journal of Geophysical Research: Solid Earth, 106(B6): 11335-11351. https://doi.org/10.1029/2000jb900449
      Milne, G. A. , Mitrovica, J. X. , Davis, J. L. , 1999. Near-Field Hydro-Isostasy: The Implementation of a Revised Sea-Level Equation. Geophysical Journal International, 139(2): 464-482. https://doi.org/10.1046/j.1365-246x.1999.00971.x
      Mitrovica, J. X. , Tamisiea, M. E. , Davis, J. L. , et al. , 2001. Recent Mass Balance of Polar Ice Sheets Inferred from Patterns of Global Sea-Level Change. Nature, 409(6823): 1026-1029. https://doi.org/10.1038/35059054
      Nghiem, S. V. , Hall, D. K. , Mote, T. L. , et al. , 2012. The Extreme Melt across the Greenland Ice Sheet in 2012. Geophysical Research Letters, 39(20): L20502. https://doi.org/10.1029/2012gl053611
      Noël, B. , van de Berg, W. J. , Machguth, H. , et al. , 2016. A Daily, 1 km Resolution Data Set of Downscaled Greenland Ice Sheet Surface Mass Balance (1958-2015). The Cryosphere, 10(5): 2361-2377. https://doi.org/10.5194/tc-10-2361-2016
      Noël, B. , van de Berg, W. J. , van Wessem, J. M. , et al. , 2018. Modelling the Climate and Surface Mass Balance of Polar Ice Sheets Using RACMO2-Part 1: Greenland (1958-2016). The Cryosphere, 12(3): 811-831. https://doi.org/10.5194/tc-12-811-2018
      Peltier, W. R. , Andrews, J. T. , 1976. Glacial-Isostatic Adjustment-I. The Forward Problem. Geophysical Journal of the Royal Astronomical Society, 46(3): 605-646. https://doi.org/10.1111/j.1365-246x.1976.tb01251.x
      Ran, J. , Ditmar, P. , Klees, R. , et al. , 2018. Statistically Optimal Estimation of Greenland Ice Sheet Mass Variations from GRACE Monthly Solutions Using an Improved Mascon Approach. Journal of Geodesy, 92(3): 299-319. https://doi.org/10.1007/s00190-017-1063-5
      Rignot, E. , Velicogna, I. , van den Broeke, M. R. , et al. , 2011. Acceleration of the Contribution of the Greenland and Antarctic Ice Sheets to Sea Level Rise. Geophysical Research Letters, 38(5): L05503. https://doi.org/10.1029/2011gl046583
      Rodell, M. , Houser, P. R. , Jambor, U. , et al. , 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3): 381-394. https://doi.org/10.1175/bams-85-3-381
      Schrama, E. J. O. , Wouters, B. , Rietbroek, R. , 2014. A Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from GRACE Data. Journal of Geophysical Research: Solid Earth, 119(7): 6048-6066. https://doi.org/10.1002/2013jb010923
      Shepherd, A. , Ivins, E. R. , A, G. , et al. , 2012. A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 338(6111): 1183-1189. https://doi.org/10.1126/science.1228102
      Sutterley, T. C. , Velicogna, I. , Csatho, B. , et al. , 2014. Evaluating Greenland Glacial Isostatic Adjustment Corrections Using GRACE, Altimetry and Surface Mass Balance Data. Environmental Research Letters, 9(1): 014004. https://doi.org/10.1088/1748-9326/9/1/014004
      Swenson, S. , Chambers, D. , Wahr, J. , 2008. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. Journal of Geophysical Research: Solid Earth, 113(B8): B08410. https://doi.org/10.1029/2007jb005338
      Swenson, S. , Wahr, J. , 2002. Methods for Inferring Regional Surface-Mass Anomalies from Gravity Recovery and Climate Experiment (GRACE) Measurements of Time-Variable Gravity. Journal of Geophysical Research: Solid Earth, 107(B9): 2193. doi: 10.1029/2001JB000576/full
      Syed, T. H. , Famiglietti, J. S. , Rodell, M. , et al. , 2008. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS. Water Resources Research, 44(2): W02433. https://doi.org/10.1029/2006wr005779
      Tamisiea, M. E. , Hill, E. M. , Ponte, R. M. , et al. , 2010. Impact of Self-Attraction and Loading on the Annual Cycle in Sea Level. Journal of Geophysical Research Atmospheres: Oceans, 115(C7): C07004. https://doi.org/10.1029/2009jc005687
      Tapley, B. D. , Bettadpur, S. , Ries, J. C. , et al. , 2004. GRACE Measurements of Mass Variability in the Earth System. Science, 305(5683): 503-505. https://doi.org/10.1126/science.1099192
      van Angelen, J. H. , van den Broeke, M. R. , Wouters, B. , et al. , 2014. Contemporary (1960-2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet. Surveys in Geophysics, 35(5): 1155-1174. https://doi.org/10.1007/s10712-013-9261-z
      van den Broeke, M. R. , Bamber, J. , Ettema, J. , et al. , 2009. Partitioning Recent Greenland Mass Loss. Science, 326(5955): 984-986. https://doi.org/10.1126/science.1178176
      van den Broeke, M. R. , Enderlin, E. M. , Howat, I. M. , et al. , 2016. On the Recent Contribution of the Greenland Ice Sheet to Sea Level Change. The Cryosphere, 10(5): 1933-1946. https://doi.org/10.5194/tc-10-1933-2016
      Velicogna, I. , Sutterley, T. C. , van den Broeke, M. R. , 2014. Regional Acceleration in Ice Mass Loss from Greenland and Antarctica Using GRACE Time-Variable Gravity Data. Geophysical Research Letters, 41(22): 8130-8137. https://doi.org/10.1002/2014gl061052
      Velicogna, I. , Wahr, J. , 2006. Acceleration of Greenland Ice Mass Loss in Spring 2004. Nature, 443(7109): 329-331. https://doi.org/10.1038/nature05168
      Velicogna, I. , Wahr, J. , 2013. Time-Variable Gravity Observations of Ice Sheet Mass Balance: Precision and Limitations of the GRACE Satellite Data. Geophysical Research Letters, 40(12): 3055-3063. https://doi.org/10.1002/grl.50527
      Vishwakarma, B. D. , Devaraju, B. , Sneeuw, N. , 2016. Minimizing the Effects of Filtering on Catchment Scale GRACE Solutions. Water Resources Research, 52(8): 5868-5890. https://doi.org/10.1002/2016wr018960
      Vishwakarma, B. D. , Horwath, M. , Devaraju, B. , et al. , 2017. A Data-Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products. Water Resources Research, 53(11): 9824-9844. https://doi.org/10.1002/2017wr021150
      Wahr, J. M., 2007. Time Variable Gravity from Satellites. In: Schubert, G., ed., Treatise on Geophysics. Elsevier, Amsterdam. https://doi.org/10.1016/b978-044452748-6.00176-0
      Wang, L. S. , Chen, C. , Ma, X. , et al. , 2018. Sea Level Fingerprints of Ice Sheet Melting and Its Impacts on Monitoring Results of GRACE. Chinese Journal of Geophysics, 61(7): 2679-2690(in Chinese with English abstract). http://www.researchgate.net/publication/328824612_Sea_level_fingerprints_of_ice_sheet_melting_and_its_impacts_on_monitoring_results_of_GRACE
      Wang, L. S. , Khan, S. A. , Bevis, M. , et al. , 2019. Downscaling GRACE Predictions of the Crustal Response to the Present-Day Mass Changes in Greenland. Journal of Geophysical Research: Solid Earth, 124(5): 5134-5152. https://doi.org/10.1029/2018jb016883
      WCRP Global Sea Level Budget Group, 2018. Global Sea-Level Budget 1993-Present. Earth System Science Data, 10(3): 1551-1590. https://doi.org/10.5194/essd-10-1551-2018
      Yang, K. , 2013. The Progress of Greenland Ice Sheet Surface Ablation Research. Journal of Glaciology and Geocryology, 35(1): 101-109(in Chinese with English abstract). http://www.researchgate.net/publication/260230405_The_Progress_of_Greenland_Ice_Sheet_Surface_Ablation_Research
      Zhang, Q. Q. , Pan, Y. , Gong, H. L. , et al. , 2019. The Impact of Different GRACE Filtering Methods on Inversing Terrestrial Water Storage Change in Southwestern Karst Area. Earth Science, 44(9): 2955-2962(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909014.htm
      Zwally, H. J. , Li, J. , Brenner, A. C. , et al. , 2011. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming: 2003-07 versus 1992-2002. Journal of Glaciology, 57(201): 88-102. https://doi.org/10.3189/002214311795306682
      陈国栋, 张胜军, 2019. 利用ICESat数据确定格陵兰冰盖高程和体积变化. 地球物理学报, 62(7): 2417-2428. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907006.htm
      王林松, 陈超, 马险, 等, 2018. 冰盖消融的海平面指纹变化及其对GRACE监测结果的影响. 地球物理学报, 61(7): 2679-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807004.htm
      杨康, 2013. 格陵兰冰盖表面消融研究进展. 冰川冻土, 35(1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301013.htm
      张青全, 潘云, 宫辉力, 等, 2019. 不同滤波方法对GRACE反演西南岩溶区陆地水储量变化的影响. 地球科学, 44(9): 2955-2962. doi: 10.3799/dqkx.2019.153
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(1)

      Article views (2691) PDF downloads(160) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return