• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 2
    Feb.  2021
    Turn off MathJax
    Article Contents
    Xu Yuxiao, Zheng Tianliang, Gao Jie, Deng Yamin, Jiang Hongchen, 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
    Citation: Xu Yuxiao, Zheng Tianliang, Gao Jie, Deng Yamin, Jiang Hongchen, 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660. doi: 10.3799/dqkx.2020.063

    Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain

    doi: 10.3799/dqkx.2020.063
    • Received Date: 2020-02-19
    • Publish Date: 2021-02-15
    • Sulfate reducing bacteria (SRB) are important anaerobic microorganisms,which are actively involved in arsenic transformation. However,the effect of the biogeochemical cycle mediated by sulfate reducing bacteria on the migration and transformation of arsenic adsorbed on the surface of iron oxide is urgently needed to be further studied. In this study,a sulfate reducing bacterium,strain Desulfovibrio JH-1 was isolated from the aquifer sediments in typical arsenic affected region of Jianghan Plain. Its sulfate,arsenate and ferric iron reduction capacity was identified,and furtherly a microcosm experiment was carried out to determine its role on the mineral-phase transformation of As-bearing ferrihydrite and As mobilization. Results indicate that it possesses the capacity of iron reduction,Fe(III) can be reduced regardless of the presence of sulfate in the system,the amount of iron reduction increases significantly under the sufficient sulfate environment. However,it doesn't possess the capacity of arsenate reduction,the removal rate of As(V) in the culture system with added sulfate could reach up to 96%. In addition,JH-S1 can promote the reduction and release of iron and arsenic from the As-bearing ferrihydrite by bacterially generated HS-,and promote the transformation of ferrihydrite to lepidocrocite. The present results provide new insights for the important role of indigenous sulfate reducing bacteria in the coupled Fe-S-As cycling in shallow aquifer system of the Jianghan Plain.

       

    • loading
    • Alam, R. , McPhedran, K. , 2019. Applications of Biological Sulfate Reduction for Remediation of Arsenic—A Review. Chemosphere, 222: 932-944. https://doi.org/10.1016/j.chemosphere.2019.01.194
      Bostick, B. C. , Fendorf, S. , 2003. Arsenite Sorption on Troilite (FeS) and Pyrite (FeS2). Geochimica et Cosmochimica Acta, 67(5): 909-921. https://doi.org/10.1016/S0016-7037(02)01170-5
      Burnol, A. , Garrido, F. , Baranger, P. , et al. , 2007. Decoupling of Arsenic and Iron Release from Ferrihydrite Suspension under Reducing Conditions: A Biogeochemical Model. Geochemical Transactions, 8: 12. https://doi.org/10.1186/1467-4866-8-12
      Burton, E. D. , Johnston, S. G. , Bush, R. T. , 2011. Microbial Sulfidogenesis in Ferrihydrite-Rich Environments: Effects on Iron Mineralogy and Arsenic Mobility. Geochimica et Cosmochimica Acta, 75(11): 3072-3087. https://doi.org/10.1016/j.gca.2011.03.001
      Burton, E. D. , Johnston, S. G. , Planer-Friedrich, B. , 2013. Coupling of Arsenic Mobility to Sulfur Transformations during Microbial Sulfate Reduction in the Presence and Absence of Humic Acid. Chemical Geology, 343: 12-24. https://doi.org/10.1016/j.chemgeo.2013.02.005
      Buschmann, J. , Berg, M. , 2009. Impact of Sulfate Reduction on the Scale of Arsenic Contamination in Groundwater of the Mekong, Bengal and Red River Deltas. Applied Geochemistry, 24(7): 1278-1286. https://doi.org/10.1016/j.apgeochem.2009.04.002
      Coleman, M. L. , Hedrick, D. B. , Lovley, D. R. , et al. , 1993. Reduction of Fe(III) in Sediments by Sulphate-Reducing Bacteria. Nature, 361(6411): 436-438. https://doi.org/10.1038/361436a0
      Deng, Y. M. , Wang, Y. X. , Li, H. J. , et al. , 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract). http://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain
      Deng, Y. M. , Zheng, T. L. , Wang, Y. X. , et al. , 2018. Effect of Microbially Mediated Iron Mineral Transformation on Temporal Variation of Arsenic in the Pleistocene Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 619-620: 1247-1258. https://doi.org/10.1016/j.scitotenv.2017.11.166
      Duan, Y. H. , Gan, Y. Q. , Wang, Y. X. , et al. , 2017. Arsenic Speciation in Aquifer Sediment under Varying Groundwater Regime and Redox Conditions at Jianghan Plain of Central China. The Science of the Total Environment, 607-608: 992-1000. https://doi.org/10.1016/j.scitotenv.2017.07.011
      Fendorf, S. , Michael, H. A. , van Geen, A. , 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974
      Fu, Y. H. , Qin, Z. H. , Yu, W. B. , et al. , 2018. Nanomineral-Aqueous Solution Interfacial Processes. Earth Science, 43(5): 1408-1424 (in Chinese with English abstract). http://www.researchgate.net/publication/326345898_Nanomineral-Aqueous_Solution_Interfacial_Processes?_sg=-GHzjV0bPRQFp8Mzbs6ayHDWFLqZ7APETmosh4SVzRmZ2a9j4ANHmW58E2nkec7-6FJt1xFu7dzijp4
      Gan, Y. Q. , Wang, Y. X. , Duan, Y. H. , et al. , 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
      Gao, J. , Zheng, T. L. , Deng, Y. M. , et al. , 2017. Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain. Earth Science, 42(5): 716-726 (in Chinese with English abstract). http://www.researchgate.net/publication/318836281_Indigenous_Iron-Reducing_Bacteria_and_Their_Impacts_on_Arsenic_Release_in_Arsenic-Affected_Aquifer_in_Jianghan_Plain
      Guo, H. M. , Ni, P. , Jia, Y. F. , et al. , 2014. Types, Chemical Characteristics and Genesis of Geogenic High-Arsenic Groundwater in the World. Earth Science Frontiers, 21(4): 1-12 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dxqy201404001
      Guo, H. M. , Zhou, Y. Z. , Jia, Y. F. , et al. , 2016. Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches. Environmental Science & Technology, 50(23): 12650-12659. https://doi.org/ 10.1021/acs.est.6b03460
      Hassan, Z. , Sultana, M. , van Breukelen, B. M. , et al. , 2015. Diverse Arsenic- and Iron-Cycling Microbial Communities in Arsenic-Contaminated Aquifers Used for Drinking Water in Bangladesh. FEMS Microbiology Ecology, 91(4): fiv026. https://doi.org/10.1093/femsec/fiv026
      Huang, F. G. , Jia, S. Y. , Liu, Y. , et al. , 2015. Reductive Dissolution of Ferrihydrite with the Release of As(V) in the Presence of Dissolved S(-II). Journal of Hazardous Materials, 286: 291-297. https://doi.org/10.1016/j.jhazmat.2014.12.035
      Jong, T. , Parry, D. L. , 2003. Removal of Sulfate and Heavy Metals by Sulfate Reducing Bacteria in Short-Term Bench Scale Upflow Anaerobic Packed Bed Reactor Runs. Water Research, 37(14): 3379-3389. https://doi.org/10.1016/s0043-1354(03)00165-9
      Kocar, B. D. , Borch, T. , Fendorf, S. , 2010. Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite. Geochimica et Cosmochimica Acta, 74(3): 980-994. https://doi.org/10.1016/j.gca.2009.10.023
      Kwon, M. J. , Boyanov, M. I. , Antonopoulos, D. A. , et al. , 2014. Effects of Dissimilatory Sulfate Reduction on FeIII (Hydr) Oxide Reduction and Microbial Community Development. Geochimica et Cosmochimica Acta, 129: 177-190. https://doi.org/10.1016/j.gca.2013.09.037
      Li, P. , Jiang, Z. , Wang, Y. H. , et al. , 2017. Analysis of the Functional Gene Structure and Metabolic Potential of Microbial Community in High Arsenic Groundwater. Water Research, 123: 268-276. https://doi.org/10.1016/j.watres.2017.06.053
      Li, P. , Li, B. , Webster, G. , et al. , 2014. Abundance and Diversity of Sulfate-Reducing Bacteria in High Arsenic Shallow Aquifers. Geomicrobiology Journal, 31(9): 802-812. https://doi.org/10.1080/01490451.2014.893181
      Li, Y. L. , Vali, H. , Yang, J. , et al. , 2006. Reduction of Iron Oxides Enhanced by a Sulfate-Reducing Bacterium and Biogenic H2S. Geomicrobiology Journal, 23(2): 103-117. https://doi.org/10.1080/01490450500533965
      Lu, Z. J. , Deng, Y. M. , Du, Y. , et al. , 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782 (in Chinese with English abstract).
      McArthur, J. M. , Banerjee, D. M. , Hudson-Edwards, K. A. , et al. , 2004. Natural Organic Matter in Sedimentary Basins and Its Relation to Arsenic in Anoxic Ground Water: The Example of West Bengal and Its Worldwide Implications. Applied Geochemistry, 19(8): 1255-1293. https://doi.org/10.1016/j.apgeochem.2004.02.001
      Ouyang, X. X. , Zhang, G. P. , Li, H. X. , et al. , 2014. Removal of Antimony in Synthetic Wastewater by Sulfate-Reducing Bacteria. Earth and Environment, 42(5): 663-668 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201405013.htm
      Pi, K. F. , Wang, Y. X. , Postma, D. , et al. , 2018. Vertical Variability of Arsenic Concentrations under the Control of Iron-Sulfur-Arsenic Interactions in Reducing Aquifer Systems. Journal of Hydrology, 561: 200-210. https://doi.org/10.1016/j.jhydrol.2018.03.049
      Saalfield, S. L. , Bostick, B. C. , 2009. Changes in Iron, Sulfur, and Arsenic Speciation Associated with Bacterial Sulfate Reduction in Ferrihydrite-Rich Systems. Environmental Science & Technology, 43(23): 8787-8793. https://doi.org/10.1021/es901651k
      Smedley, P. L. , Kinniburgh, D. G. , 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. https://doi.org/10.1016/s0883-2927(02)00018-5
      Sun, J. , Quicksall, A. N. , Chillrud, S. N. , et al. , 2016. Arsenic Mobilization from Sediments in Microcosms under Sulfate Reduction. Chemosphere, 153: 254-261. https://doi.org/10.1016/j.chemosphere.2016.02.117
      Teclu, D. , Tivchev, G. , Laing, M. , et al. , 2008. Bioremoval of Arsenic Species from Contaminated Waters by Sulphate-Reducing Bacteria. Water Research, 42(19): 4885-4893. https://doi.org/10.1016/j.watres.2008.09.010
      Wang, J. N. , Zeng, X. C. , Zhu, X. B. , et al. , 2017. Sulfate Enhances the Dissimilatory Arsenate-Respiring Prokaryotes-Mediated Mobilization, Reduction and Release of Insoluble Arsenic and Iron from the Arsenic-Rich Sediments into Groundwater. Journal of Hazardous Materials, 339: 409-417. https://doi.org/10.1016/j.jhazmat.2017.06.052
      Wang, S. F. , He, X. Y. , Pan, R. R. , et al. , 2016. The Effect of Microbial Sulfidogenesis on the Stability of As-Fe Coprecipitate with Low Fe/As Molar Ratio under Anaerobic Conditions. Environmental Science and Pollution Research, 23(8): 7267-7277. https://doi.org/10.1007/s11356-015-5927-z
      Wang, X. M. , Yang, K. G. , Sun, S. F. , et al. , 2011. The Structure and Composition of Ferrihydrite and Its Environmental Geochemical Behaviors. Earth Science Frontiers, 18(2): 339-347 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201102037.htm
      Yu, F. , Wan, J. F. , Zhao, Y. G. , et al. , 2016. Factors Influencing Arsenic Removal by Sulfate-Reducing Bacteria. Chinese Journal of Environmental Engineering, 10(7): 3898-3904 (in Chinese with English abstract). http://www.researchgate.net/publication/305540225_Factors_influencing_arsenic_removal_by_sulfate-reducing_bacteria
      Zheng, T. L. , Deng, Y. M. , Wang, Y. X. , et al. , 2019. Seasonal Microbial Variation Accounts for Arsenic Dynamics in Shallow Alluvial Aquifer Systems. Journal of Hazardous Materials, 367: 109-119. https://doi.org/10.1016/j.jhazmat.2018.12.087
      邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
      傅宇虹, 覃宗华, 于文彬, 等, 2018. 纳米矿物-水溶液界面过程. 地球科学, 43(5): 1408-1424. doi: 10.3799/dqkx.2018.401
      高杰, 郑天亮, 邓娅敏, 等, 2017. 江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响. 地球科学, 42(5): 716-726. doi: 10.3799/dqkx.2017.059
      郭华明, 倪萍, 贾永锋, 等, 2014. 原生高砷地下水的类型、化学特征及成因. 地学前缘, 21(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404002.htm
      鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
      欧阳小雪, 张国平, 李海霞, 等, 2014. 用硫酸盐还原菌去除废水中锑的实验研究. 地球与环境, 42(5): 663-668. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201405013.htm
      王小明, 杨凯光, 孙世发, 等, 2011. 水铁矿的结构、组成及环境地球化学行为. 地学前缘, 18(2): 339-347. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102037.htm
      余飞, 万俊锋, 赵雅光, 等, 2016. 硫酸盐还原菌SRB除砷的影响因素. 环境工程学报, 10(7): 3898-3904. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201607084.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (6023) PDF downloads(172) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return