Citation: | He Mouchun, Ding Zhenju, Wei Lianxi, Zhou Tengfei, 2021. Geochemical Characteristics and Metallogenic Significance of Lower Permian Shuangqiaozi Formation in Taiping Mountains, Heilongjiang Province. Earth Science, 46(5): 1537-1553. doi: 10.3799/dqkx.2020.105 |
Akarish, A.I.M., El-Gohary, A.M., 2008. Petrography and Geochemistry of Lower Paleozoic Sandstones, East Sinai, Egypt: Implications for Provenance and Tectonic Setting. Journal of African Earth Sciences, 52: 43-54. doi: 10.1016/j.jafrearsci.2008.04.002
|
Alvarez, N.O., Roser, B.P., 2007. Geochemistry of Black Shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source Weathering, Provenance and Tectonic Setting. Journal of South American Earth Sciences, 23 (4): 271-289. doi: 10.1016/j.jsames.2007.02.003
|
Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contribution to Mineralogy and Petrology, 123: 323-333. https://doi.org/10.1007/s004100050159.
|
Brownlw, E.C., 1979. Geochemisty. Prentie-Hal, New Jersey.
|
Cullers, R.L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51: 181-203. doi: 10.1016/S0024-4937(99)00063-8
|
Dey, S., Rai, A.K., Chaki, A., 2009. Palaeoweathering, Composition and Tectonics of Provenance of the Proterozoic Intracratonic Kaladgi-Badami Basin, Karnataka, Southern India: Evidence from Sandstone Petrography and Geochemistry. Journal of Asian Earth Sciences, 34 (6): 703-715. doi: 10.1016/j.jseaes.2008.10.003
|
Disnar, J.R., Sureau, J.F., 1990. Organic Matter in Ore Genesis: Progress and Perspectives. Organic Geochemistry, 16(1-3): 577-599. doi: 10.1016/0146-6380(90)90072-8
|
Fang, Y., He, M.C., Ding, Z.J., et al., 2020. Ore- Forming Fluid Characteristics and Genesis of the Wudaogou Gold Deposit in Dongning County, Heilongjiang Province. Geoscience, 34(2): 254-265 (in Chinese with English abstract).
|
Floyd, P.A., Winchesrer, J.A., Park, R.G., 1989. Geochemistry and Tectonic Setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45(1-3): 203-214. doi: 10.1016/0301-9268(89)90040-5
|
Fralick, P.W., Kronberg, B.I., 1997. Geochemical Discrimination of Clastic Sedimentary Rock Sources. Sedimentary Geology, 113: 111-124. doi: 10.1016/S0037-0738(97)00049-3
|
Haskin, L.A., Haskin, M.A., Frey, F.A., et al., 1968. Relative and Absolute Terrestrial Abundances of the Rare Earth Elements. Pergamon Press Ltd., Oxford.
|
He, Y.S., Gao, F.H., Xiu, M., 2019. Age, Provenance and Tectonic Setting of Fuxingtun Formation in Zhangguangcai Range. Earth Science, 44(10): 3223-3236 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910005.htm
|
Jiang, S. Y., Chen, Y. Q., Ling, H. F., et al., 2006. Trace- and Rare-Earth Element Geochemistry and Pb-Pb Dating of Black Shales and Intercalated Ni-Mo-PGE-Au Sulfide Ores in Lower Cambrian Strata, Yangtze Platform, South China. Mineralium Deposita, 41(5): 453-467. https://doi.org/10.1007/s00126-006-0066-6
|
Kalsbeek, F., Frei, R., 2010. Geochemistry of Precambrian Sedimentary Rocks Used to Solve Stratigraphical Problem: An Example from the Neoproterozoic Volta Basin, Ghana. Precambrian Research, 176: 65-76. doi: 10.1016/j.precamres.2009.10.004
|
Li, S.R., Gao, Z.M., 1996. Silicalite of Hydrothermal Origin in Lower Cambrian Black Rock Series of South China. Acta Mineralogica Sinica, 16(4): 416-422 (in Chinese with English abstract).
|
Liu, J.J., Liu, Z.J., Yang, Y., et al., 2007. Research on the Organic Geochemistry and Biomarkers of the Large-Scale Barium Metallogenic Belt in the Southern Qinling Mountains, China. J. Mineral Petrol., 27(3): 39-48 (in Chinese with English abstract).
|
Manikyamba, C., Kerrich, R., González-Álvarez, I., et al., 2008. Geochemistry of Paleoproterozoic Black Shales from the Intracontinental Cuddapah Basin, India: Implications for Provenance, Tectonic Setting, and Weathering Intensity. Precambrian Research, 162(3-4): 424-440. doi: 10.1016/j.precamres.2007.10.003
|
McLennan, S.M., Hemming, S., Mcdaniel, D.K., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Geological Society America Special Paper, 284: 21-40. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg76/ref76&dbid=16&doi=10.1139%2Fcjes-2013-0144&key=10.1130%2FSPE284-p21
|
Meng, E., Xu, W.L., Pei, F.P., et al., 2010. Detrital- Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt. Tectonophysics, 485: 42-51. doi: 10.1016/j.tecto.2009.11.015
|
Mishra, M., Sen, S., 2010. Geological Signatures of Mesoproterozoic Siliciclastic Rocks of the Kaimur Group of the Vindhyan Supergroup, Central India. Chin. J. Geochem., 20: 21-32. http://www.ingentaconnect.com/content/ssam/10009426/2010/00000029/00000001/art00003
|
Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., 2011. Geochemistry of Lower Jurassic Shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, Source Weathering and Tectonic Setting. Chemie der Erde, 71: 279-288. doi: 10.1016/j.chemer.2010.10.001
|
Paikaray, S., Banerjee, S., Mukherji, S., 2008. Geochemistry of Shales from Palaeoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on Provenance, Tectonics and Paleoweathering. Journal of Asian Earth Sciences, 32: 34-48. doi: 10.1016/j.jseaes.2007.10.002
|
Ren, J.S., Niu, B.G., Liu, Z.G., 1999. Soft Collision, Superposition Orogeny and Polycyclic Suturing. Earth Science Frontiers, 6(3): 85-93 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY199903010.htm
|
Roser, B.P., Korsch, R.J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. Geology, 94: 635-650. doi: 10.1086/629071
|
Roser, B.P., Korsch, R.J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67: 119-139. doi: 10.1016/0009-2541(88)90010-1
|
Sengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364: 299-307. https://doi.org/10.1038/364299a0
|
Spalletti, L.A., Queralt, I., Matheos, S.D., 2008. Sedimentary Petrology and Geochemistry of Siliciclastic Rocks from the Upper Jurassic Tordillo Formation (Neuquen Basin, Western Argentina): Implications for Provenance and Tectonic Setting. Journal of South American Earth Sciences, 25: 440-463. doi: 10.1016/j.jsames.2007.08.005
|
Tang, K.D., Wang, Y., He, G.Q., et al., 1995. Continental-Margin Structure of Northeast China and Its Adjacent Areas. Acta Geologica Sinica, 69(1): 16-30 (in Chinese with English abstract).
|
Wang, H., Ling, W.L., Duan, R.C., et al., 2012. Os Isotopic Geochemistry of Neoproterozoic-Cambrian Black Shales in Eastern Three Gorges of Yangtze Craton and Its Geological Significance. Earth Science, 37(3): 451-461 (in Chinese with English abstract).
|
Wang, P.W., Chen, Z.H., Jin, Z.J., et al., 2019. Optimizing Parameter"Total Organic Carbon Content"for Shale Oil and Gas Resource Assesment: Taking West Canada Sedimentary Basin Devonian Duvernay Shale as an Example. Earth Science, 44(2): 504-512 (in Chinese with English abstract).
|
Wilde, S.A., Wu, F.Y., Zhang, X.Z., 2003. Late Pan- African Magmatism in Northeastern China: SHRIMP U-Pb Zircon Evidence for Igneous Ages from the Mashan Complex. Precambrian Research, 122: 311-327. doi: 10.1016/S0301-9268(02)00217-6
|
Wu, F.Y., Yang, J.H., Lo, C.H., et al., 2007. The Heilongjiang Group: A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China. The Island Arc, 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x
|
Xie, H.Q., Miao, L.C., Chen, F.K., et al., 2008a. Characteristics of the "Mashan Group" and Zircon SHRIMP U-Pb Dating of Granite in Muleng Area, Southeastern Heilongjiang Province, China: Constraint on Crustal Evolution of the Southern most of Jiamusi Massif. Geological Bulletin of China, 27(12): 2127-2137 (in Chinese with English abstract).
|
Xie, H.Q., Zhang, F.C., Miao, L.C., et al., 2008b. Zircon SHRIMP U-Pb Dating of the Amphibolite from "Heilongjiang Group" and the Granite in Mudanjiang Area, NE China, and Its Geological Significance. Acta Petrologica Sinica, 24(6): 1237-1250 (in Chinese with English abstract).
|
Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905017.htm
|
Xu, W.L., Wang, F., Meng, E., et al., 2012. Paleozoic-Early Mesozoic Tectonic Evolution in the Eastern Heilongjiang Province, NE China: Evidence from Igneous Rock Association and U-Pb Geochronology of Detrital Zircons. Journal of Jilin University (Earth Science Edition), 42(5): 1378-1389 (in Chinese with English abstract).
|
Zhou, J.B., Shi, A.G., Jing, Y., 2016. Combined NE China Blocks: Tectonic Evolution and Supercontinent Reconstructions. Journal of Jilin University (Earth Science Edition), 46(4): 1042-1055 (in Chinese with English abstract).
|
Zhou, J.B., Wilde, S.A., 2013. The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt. Gondwana Research, 23: 1365-1377. doi: 10.1016/j.gr.2012.05.012
|
Zhou, J.B., Wilde, S.A., Zhang, X.Z., 2009. The Onset of Pacific Margin Accretion in NE China: Evidence from the Heilongjiang High-Pressure Metamorphic Belt. Tectonophysics, 478: 230-246. doi: 10.1016/j.tecto.2009.08.009
|
Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al., 2011. Early Paleozoic Metamorphic Rocks of the Erguna Block in the Great Xing'an Range, NE China: Evidence for the Timing of Magmatic and Metamorphic Events and Their Tectonic Implications. Tectonophysics, 499: 105-117. doi: 10.1016/j.tecto.2010.12.009
|
Zhu, D.C., Zhu, L.D., Lin, L., et al., 2003. Organic Mineralization of Lead-Zinc Deposits in Devonian System, Xicheng Ore Field. Earth Science, 28(2): 201-208 (in Chinese with English abstract).
|
方焱, 何谋惷, 丁振举, 等, 2020. 黑龙江省东宁县五道沟金矿成矿流体特征及矿床成因. 现代地质, 34(2): 254-265. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202002004.htm
|
何雨思, 高福红, 修铭, 等, 2019. 张广才岭福兴屯组的形成时代、物源及构造背景. 地球科学, 44(10): 3223-3236. doi: 10.3799/dqkx.2019.145
|
李胜荣, 高振敏, 1996. 华南下寒武统黑色岩系中的热水成因硅质岩. 矿物学报, 16(4): 416-422. doi: 10.3321/j.issn:1000-4734.1996.04.014
|
刘家军, 柳振江, 杨艳, 等, 2007. 南秦岭大型钡成矿带有机地球化学特征与生物标志物研究. 矿物岩石, 27(3): 39-48. doi: 10.3969/j.issn.1001-6872.2007.03.008
|
任纪舜, 牛宝贵, 刘志刚, 1999. 软碰撞、叠覆造山和多旋回缝合作用. 地学前缘, 6(3): 85-93. doi: 10.3321/j.issn:1005-2321.1999.03.008
|
唐克东, 王莹, 何国琦, 等, 1995. 中国东北及邻区大陆边缘构造. 地质学报, 69(1): 16-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199501001.htm
|
王浩, 凌文黎, 段瑞春, 等, 2012. 扬子克拉通峡东地区新元古代-寒武纪黑色岩系Os同位素地球化学特征及其地质意义. 地球科学, 37(3): 451-461. http://www.earth-science.net/article/id/2249
|
王鹏威, 谌卓恒, 金之钧, 等, 2019. 页岩油气资源评价参数之总有机碳含量的优选: 以西加盆地泥盆系Duvernay页岩为例. 地球科学, 44(2): 504-512. doi: 10.3799/dqkx.2018.191
|
颉颃强, 苗来成, 陈福坤, 等, 2008a. 黑龙江东南部穆棱地区"麻山群"的特征及花岗岩锆石SHRIMP U-Pb定年——对佳木斯地块最南缘地壳演化的制约. 地质通报, 27(12): 2127-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200812023.htm
|
颉颃强, 张福成, 苗来成, 等, 2008b. 东北牡丹江地区"黑龙江群"中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义. 岩石学报, 24(6): 1237-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806008.htm
|
许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036
|
许文良, 王枫, 孟恩, 等, 2012. 黑龙江省东部古生代-早中生代的构造演化: 火成岩组合与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(5): 1378-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205012.htm
|
周建波, 石爱国, 景妍, 2016. 东北地块群: 构造演化与古大陆重建. 吉林大学学报(地球科学版), 46(4): 1042-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604005.htm
|
朱弟成, 朱利东, 林丽, 等, 2003. 西成矿田泥盆系铅锌矿床中的有机质成矿作用. 地球科学, 28(2): 201-208. http://www.earth-science.net/article/id/1237
|
![]() |
![]() |