Citation: | Zuo Renguang, Peng Yong, Li Tong, Xiong Yihui, 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358. doi: 10.3799/dqkx.2020.111 |
Bengio, Y., Lamblin, P., Popovici, D., et al., 2007. Greedy Layer-Wise Training of Deep Networks. In Advances in Neural Information Processing Systems, London, 153-160.
|
Chen, J. P., Li, J., Xie, S., et al., 2017. Geological Big Data Research in China. Journal of Geology, 41(3):353-366 (in Chinese with English abstract).
|
Chen, J., Mao, X. C., Liu, Z.K., et al., 2020.Three-Dimensional Metallogenic Prediction Based on Random Forest Classification Algorithm for the Dayingezhuang Gold Deposit. Geotectonica et Metallogenia, 44(2):231-241 (in Chinese with English abstract).
|
Chen, Y. L., Lu, L. J., Li, X. B., 2014. Application of Continuous Restricted Boltzmann Machine to Identify Multivariate Geochemical Anomaly. Journal of Geochemical Exploration, 140:56-63. https://doi.org/10.1016/j.gexplo.2014.02.013
|
Chen, Y. L., Wu, W., Zhao, Q. Y., 2020. A Bat Algorithm-Based Data-Driven Model for Mineral Prospectivity Mapping. Natural Resources Research, 29(1):247-265. https://doi.org/10.1007/s11053-019-09589-z
|
Chen, Y. Q., Zhao, P. D., 2009. Extraction and Integration of Geo-Anomalies Associated with Mineralization. Earth Science, 34(2):325-335(in Chinese with English abstract).
|
Cheng, Q. M., 2012. Singularity Theory and Methods for Mapping Geochemical Anomalies Caused by Buried Sources and for Predicting Undiscovered Mineral Deposits in Covered Areas. Journal of Geochemical Exploration, 122:55-70. https://doi.org/10.1016/j.gexplo.2012.07.007
|
Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al., 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems, London, 2672-2680.
|
Graves, A., Mohamed, A. R., Hinton, G. E., 2013. Speech Recognition with Deep Recurrent Neural Networks. IEEE International Conference on Acoustics, Speech and Signal Processing, London, 6645-6649. http://doi.org/10.1109/ICASSP.2013.6638947
|
He, K., Zhang, X., Ren, S., et al., 2016. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition, London, 770-778. https://doi.org/10.1109/CVPR.2016.90
|
Hinton, G. E., Osindero, S., Teh, Y. W., 2006. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18(7):1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
|
Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. ImageNet Classification with Deep Convolutional Neural Networks. Proceedings of the Advances in Neural Information Processing Systems, London, 1097-1105. https://doi.org/10.1145/3065386
|
LeCun, Y., Bottou, L., Bengio, Y., et al., 1998. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278-2324. https://doi.org/10.1109/5.726791
|
LeCun, Y., Huang, F. J., Bottou, L., 2004. Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2: II-104. https://doi.org/10.1109/CVPR.2004.1315150
|
Li, S., Chen, J. P., Xiang, J., 2020. Applications of Deep Convolutional Neural Networks in Prospecting Prediction Based on Two-Dimensional Geological Big Data. Neural Computing and Applications, 32(7):2037-2053. https://doi.org/10.1007/s00521-019-04341-3
|
Liu, X.Y., Zhou, Y. Z., 2019. Application of Association Rule Algorithm in Studying Abnormal Elemental Associations in Panxijing Area in Western Guangdong Province, China. Earth Science Frontiers, 26(4):125-130 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201904017.htm
|
Liu, Y. P., Zhu, L. X., Zhou, Y. Z., 2018. Application of Convolutional Neural Network in Prospecting Prediction of Ore Deposits:Taking the Zhaojikou Pb-Zn Ore Deposit in Anhui Province as a Case. Acta Petrologica Sinica, 34(11):3217-3224 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201270234059.html
|
Mignan, A., Broccardo, M., 2019. One Neuron Versus Deep Learning in Aftershock Prediction. Nature, 574(7776):E1-E3. https://doi.org/10.1038/s41586-019-1582-8
|
Mishkin, D., Sergievskiy, N., Matas, J., 2017. Systematic Evaluation of Convolution Neural Network Advances on the Imagenet. Computer Vision and Image Understanding, 161:11-19. https://doi.org/10.1016/j.cviu.2017.05.007
|
Szegedy, C., Liu, W., Jia, Y., et al., 2014. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, London, 1-9. https://doi.org/10.1109/CVPR.2015.7298594
|
Vasconcelos, C. N., Vasconcelos, B. N., 2017. Convolutional neural network committees for melanoma classification with classical and expert knowledge based image transforms data augmentation. arXiv preprint arXiv: 1702.07025
|
Wang, J., Perez, L., 2017. The Effectiveness of Data Augmentation in Image Classification Using Deep Learning. Convolutional Neural Networks Vis. Recignit: 1712.04621
|
Weyn, J. A., Durran, D. R., Caruana, R., 2019. Can Machines Learn to Predict Weather? Using Deep Learning to Predict Gridded 500 hPa Geopotential Height from Historical Weather Data. Journal of Advances in Modeling Earth Systems, 11(8):2680-2693. https://doi.org/10.1029/2019ms001705
|
Wu, C.L., Liu, G., Zhang, X, L., et al., 2016. Discussion on Geological Science Big Data and Its Applications. Chinese Science Bulletin, 61(16):1797-1807 (in Chinese with English abstract). doi: 10.1360/N972015-01035
|
Xiao, K. Y., Sun, L., Li, N., et al., 2015. Mineral Resources Assessment under the Thought of Big Data. Geological Bulletin of China, 4(7):1266-1272 (in Chinese with English abstract). http://www.researchgate.net/publication/283105011_Mineral_resources_assessment_under_the_thought_of_big_data
|
Xiong, Y. H., Zuo, R. G., Carranza, E. J. M., 2018. Mapping Mineral Prospectivity through Big Data Analytics and a Deep Learning Algorithm. Ore Geology Reviews, 102:811-817. https://doi.org/10.1016/j.oregeorev.2018.10.006
|
Zhang, X. L., Wu, C. L, Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 2020, 45(2):634-644 (in Chinese with English abstract).
|
Zhang, S., Xiao, K. Y., Carranza, E. J. M., et al., 2019. Integration of Auto-Encoder Network with Density-Based Spatial Clustering for Geochemical Anomaly Detection for Mineral Exploration. Computers & Geosciences, 130:43-56. https://doi.org/10.1016/j.cageo.2019.05.011
|
Zhao, P. D., 2019. Characteristics and Rational Utilization of Geological Big Data. Earth Science Frontiers, 26(4):1-5(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201904002.htm
|
Zhou, Y. Z., Chen, S., Zhang, Q., et al., 2018. Advances and Prospects of Big Data and Mathematical Geoscience. Acta Petrologica Sinica, 34(2):255-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201802001.htm
|
Zuo, R. G., Xiong, Y. H., Wang, J., et al., 2019. Deep Learning and its Application in Geochemical Mapping. Earth-ScienceReviews, 192:1-14. https://doi.org/10.1016/j.earscirev.2019.02.023
|
陈进, 毛先成, 刘占坤, 等, 2020.基于随机森林算法的大尹格庄金矿床三维成矿预测.大地构造与成矿学, 44(2):231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202002008.htm
|
陈建平, 李靖, 谢帅, 等, 2017.中国地质大数据研究现状.地质学刊, 41(3):353-366. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703001.htm
|
陈永清, 赵鹏大, 2009.综合致矿地质异常信息提取与集成.地球科学-中国地质大学学报, 34(2):325-335. doi: 10.3321/j.issn:1000-2383.2009.02.016
|
刘心怡, 周永章, 2019.关联规则算法在粤西庞西垌地区元素异常组合研究中的应用.地学前缘, 26(4):125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904017.htm
|
刘艳鹏, 朱立新, 周永章, 2018.卷积神经网络及其在矿床找矿预测中的应用-以安徽省兆吉口铅锌矿床为例.岩石学报, 34(11):3217-3224. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811007.htm
|
吴冲龙, 刘刚, 张夏林, 等, 2016.地质科学大数据及其利用的若干问题探讨.科学通报, 61(16):1797-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201616011.htm
|
肖克炎, 孙莉, 李楠, 等, 2015.大数据思维下的矿产资源评价.地质通报, 34(7):1266-1272. doi: 10.3969/j.issn.1671-2552.2015.07.003
|
张夏林, 吴冲龙, 周琦, 等, 2020.贵州超大型锰矿集区的多尺度三维地质建模.地球科学, 45(2):634-644. doi: 10.3799/dqkx.2018.384
|
赵鹏大, 2019.地质大数据特点及其合理开发利用.地学前缘, 26(4):1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904002.htm
|
周永章, 陈烁, 张旗, 等, 2018.大数据与数学地球科学研究进展-大数据与数学地球科学专题代序.岩石学报, 34(2):255-263. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802001.htm
|