Citation: | Gao Baolong, Hu Zhengwang, Li Duan, Du Jinsong, 2021. Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method. Earth Science, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134 |
An, Y.L., Chai, Y.P., Zhang, M.H., et al., 2013. An Optimal Model of the Equivalent Source for Reduction-to-Plane of Potential Field on Uneven Surface and the New Method to Deduce Unit Potential Field Expression of the Optimal Model. Chinese Journal of Geophysics, 56(7): 2473-2483 (in Chinese with English abstract). doi: 10.1002/cjg2.20045/full
|
Andrews, S. B., Moore, P., King, M. A., 2015. Mass Change from GRACE: A Simulated Comparison of Level-1B Analysis Techniques. Geophysical Journal International, 200(1): 503-518. https://doi.org/10.1093/gji/ggu402
|
Asgharzadeh, M. F., von Frese, R. R. B., Kim, H. R., 2008. Spherical Prism Magnetic Effects by Gauss-Legendre Quadrature Integration. Geophysical Journal International, 173(1): 315-333. https://doi.org/10.1111/j.1365-246X.2007.03692.x
|
Barnes, G., Lumley, J., 2011. Processing Gravity Gradient Data. Geophysics, 76(2): I33-I47. https://doi.org/10.1190/1.3548548
|
Barzaghi, R., Tselfes, N., Tziavos, I. N., et al., 2008. Geoid and High Resolution Sea Surface Topography Modelling in the Mediterranean from Gravimetry, Altimetry and GOCE Data: Evaluation by Simulation. Journal of Geodesy, 83(8): 751-772. https://doi.org/10.1007/s00190-008-0292-z
|
Bhattacharyya, B.K., Chan, K.C., 1977. Reduction of Magnetic and Gravity Data on an Arbitrary Surface Acquired a Region of High Topographic. Geophysics, 42(42): 1411-1430. https://doi.org/10.1190/1.1440802 http://adsabs.harvard.edu/abs/1977Geop...42.1411B
|
Clark, D.A., 2013. New Method for Interpretation of Magnetic Vector and Gradient Tensor Data Ⅱ: Application to the Mount Leyshon Anomaly, Queensland, Australia. Exploration Geophysics, 44(2): 114-127. https://doi.org/10.1071/EG12066
|
Cordell, L., Grauch, V.J.S., 1982. Reconciliation of the Discrete and Integral Fourier Transforms. Geophysics, 47(2): 237-243. https://doi.org/10.1190/1.1441330
|
Dampney, C. N. G., 1969. The Equivalent Source Technique. Geophysics, 34(1): 39-53. doi: 10.1190/1.1439996
|
Du, J.S., Chen, C., 2015. Progress and Outlook in Global Lithospheric Magnetic Field Modelling by Satellite Magnetic Measurements. Progress in Geophysics, 30(3): 1017-1033 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201503005.htm
|
Featherstone, W.E., 2003. Software for Computing Five Existing Types of Deterministically Modified Integration Kernel for Gravimetric Geoid Determination. Computer and Geosciences, 29(2): 183-193. https://doi.org/10.1016/S0098-3004(02)0074-2 doi: 10.1016/S0098-3004(02)00074-2
|
Gao, X.B., Li, S.S., Li, H., et al., 2013. Application of Point Mass Model and Least Square Collocation in Multi-Source Gravity Data Fusion. Geodesy and Geodynamics, 33(1): 145-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201301034.htm
|
Guo, Z.H., Guan, Z.N., Xiong, S.Q., 2004. Cuboid ΔT and Its Gradient Forward Theoretical Expressions without Analytic Odd Points. Chinese Journal of Geophysics, 47(6): 1131-1138 (in Chinese with English abstract)
|
Kim, H. R., von Frese, R. R. B., Taylor, P. T., et al., 2007. Improved Magnetic Anomalies of the Antarctic Lithosphere from Satellite and Near-Surface Data. Geophysical Journal International, 171(1): 119-126. https://doi.org/10.1111/j.1365-246X.2007.03516.x
|
Li, D., 2018. Reconstruction Method of Gravity and Magnetic Fields by Equivalent Sources (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Li, D., Chen, C., Liang, Q., et al., 2018. Reconstruction of Discrete Data Using Three-Tier Equivalent Source with Variable Size. Earth Science, 43(3): 873-886 (in Chinese with English abstract).
|
Li, D., Liang, Q., Du, J., et al., 2020. Transforming Total-Field Magnetic Anomalies into Three Components Using Dual-Layer Equivalent Source. Geophysical Research Letters, 47(3): e2019GL084607. https://doi.org/10.1029/2019GL084607 doi: 10.1029/2019GL084607
|
Li, J.C., Chao, D.B., Ning, J.S., 1995. Spherical Cap Harmonic Expansion for Local Gravity Field Representation. Manuscripta Geodaetica, 20: 265-277. http://www.ingentaconnect.com/content/ssam/03408825/1995/00000020/00000004/art00004
|
Li, Y., Nabighian, M., Oldenburg, D.W., 2014. Using an Equivalent Source with Positivity for Low-Latitude Reduction to the Pole without Striation. Geophysics, 79(6): J81-J90. https://doi.org/10.1190/GEO2014-0134.1 doi: 10.1190/geo2014-0134.1
|
Li, Y., Oldenburg, D.W., 1996. 3-D Inversion of Magnetic Data. Geophysics, 61(2): 394-408. https://doi.org/10.1190/1.1443968
|
MacLennan, C.A., Li, Y.G., 2013. Denoising Multicomponent CSEM Data with Equivalent Source Processing Techniques. Geophysics, 78(3): 125-135. https://doi.org/10.1190/GEO2012-0226.1 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000029000001000774000001&idtype=cvips&gifs=Yes
|
Maus, S., Barckhausen, U., Berkenbosch, H., et al., 2009. EMAG2: A 2-Arc Min Resolution Earth Magnetic Anomaly Grid Compiled from Satellite, Airborne, and Marine Magnetic Measurements. Geochemistry, Geophysics, Geosystems, 10(8): Q08005. https://doi.org/10.1029/2009GC002471 doi: 10.1029/2009GC002471/abstract
|
Oliveira Jr, V.C., Barbosa, V.C.F., Uieda, L., 2013. Polynomial Equivalent Layer. Geophysics, 78(1): 1-13. https://doi.org/10.1190/geo2012-0196.1 http://adsabs.harvard.edu/abs/2013Geop...78G...1O
|
Ou, J. M., Du, A. M., Thébault, E., et al., 2013. A High Resolution Lithospheric Magnetic Field Model over China. Science China Earth Sciences, 56(10): 1759-1768. https://doi.org/10.1007/s11430-013-4580-y
|
Pang, X.L., 2012. Research on Reduction of Aeromagnetic Anomalies by Means of Equivalent Source Technology (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract), .
|
Pilkington, M., 1997. 3-D Magnetic Imaging Using Conjugate Gradients. Geophysics, 62(4): 1132-1142. https://doi.org/10.1190/1.1444214
|
Purucker, M.E., 1990. The Computation of Vector Magnetic Anomalies: A Comparison of Techniques and Errors. Physics of the Earth and Planetary Interiors, 62: 231-245. https://doi.org/10.1016/0031-9201(90)90168-W
|
Purucker, M.E., Ravat, D., Prey, H., et al., 2000. An Altitude-Normalized Magnetic Map of Mars and Its Interpretation. Geophysical Research Letters, 27(16): 2449-2452. doi: 10.1029/2000GL000072
|
Ravat, D., Langel, R.A., Purucker, M., et al., 1995. Global Vector and Scalar Magsat Magnetic Anomaly Maps. Journal of Geophysical Research, 100: 20111-20136. doi: 10.1029/95JB01237
|
Silva, J.B.C., Santos, D.F., Garabito, G., 2014. Harmonic and Biharmonic Biases in Potential Field Inversion. Geophysics, 79(1): G15-G25. https://doi.org/10.1190/GEO2013-0137.1 doi: 10.1190/geo2013-0137.1
|
Sjöberg, L. E., 2005. A Local Least-Squares Modification of Stokes' Formula. Studia Geophysica et Geodaetica, 49(1): 23-30. https://doi.org/10.1007/s11200-005-1623-7
|
Stolz, R., Zakosarenko, V., Schulz, M., et al., 2006. Magnetic Full-Tensor SQUID Gradiometer System for Geophysical Application. The Leading Edge, 25(2): 178-180. https://doi.org/10.1190/1.2172308
|
Syberg, F.J.R., 1972. A Fourier Method for the Regional-Residual Problem of Potential Fields. Geophysical Prospecting, (20): 47-75. https://doi.org/10.1111/j.1365-2478.1972.tb00619.x
|
Tikhonov, A.N., Arsenin, V.Y., 1977. Solution of Ill-Posed Problem. Mathematics of Computation, 32(144): 491-491.
|
Whaler, K.A., 1994. Downward Continuation of Magsat Lithospheric Anomalies to the Earth's Surface. Geophysical Journal International, 116: 267-278. https://doi.org/10.1111/j.1365-246X.1994.tb01797.x
|
Wu, Y.H., Luo, Z.C., Zhou, B.Y., 2016. Regional Gravity Modeling Based on Heterogeneous Data Sets by Using Poisson Wavelets Radial Basis Functions. Chinese Journal of Geophysics, 59(3): 852-864 (in Chinese with English abstract). doi: 10.6038/cjg20160308
|
Xia, J., Sprowl, D.R., 1991. Correction of Topographic Distortion in Gravity Data. Geophysics, 56(4): 537-541. https://doi.org/10.1190/1.1443070
|
Xie, R.K., Wang, P., Duan, S.L., et al., 2015. Analysis of the Reduction of Aeromagnetic Gradients Data to a Horizontal Plane. Progress in Geophysics, 30(6): 2836-2840 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQWJ201506051&dbcode=CJFD&year=2015&dflag=pdfdown
|
Zhang, W., Zhang, X.J., Tong, J., et al., 2018. Gravity and Magnetic Anomaly Characteristics and Its Geological Interpretation in Rizhao and Lianyungang Areas. Earth Science, 43(12): 4490-4497 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812017.htm
|
Zhou, J., Meng, X., Guo, L., et al., 2015. Three-Dimensional Cross-Gradient Joint Inversion of Gravity and Normalized Magnetic Source Strength Data in the Presence of Remanent Magnetization. Journal of Applied Geophysics, 199: 51-60. https://doi.org/10.1016/j.jappgeo.2015.05.001 http://www.sciencedirect.com/science/article/pii/S0926985115001512
|
安玉林, 柴玉普, 张明华, 等, 2013. 曲化平用最佳等效源模型及其单位位场表达式推导的新方法. 地球物理学报, 56(7): 2473-2483. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307032.htm
|
杜劲松, 陈超, 2015. 基于卫星磁测数据的全球岩石圈磁场建模进展与展望. 地球物理学进展, 30(3): 1017-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503005.htm
|
高新兵, 李珊珊, 李海, 等, 2013. 点质量模型与最小二乘配置在多源重力数据融合中的应用. 大地测量与地球动力学, 33(1): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201301034.htm
|
郭志宏, 管志宁, 熊盛青, 2004. 长方体ΔT场及其梯度场无解析奇异点理论表达式. 地球物理学报, 47(6): 1131-1138. doi: 10.3321/j.issn:0001-5733.2004.06.029
|
李端, 2018. 基于等效源技术的重磁场重构方法(博士学位论文). 武汉: 中国地质大学.
|
李端, 陈超, 梁青, 等, 2018. 基于三层变尺度等效源的离散重力数据重构. 地球科学, 43(3): 873-886. doi: 10.3799/dqkx.2017.513
|
庞旭林, 2012. 航磁异常数据曲面延拓等效源法技术研究(硕士学位论文). 北京: 中国地质大学.
|
吴怿昊, 罗志才, 周波阳, 2016. 基于泊松小波径向基函数融合多源数据的局部重力场建模. 地球物理学报, 59(3): 852-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603008.htm
|
谢汝宽, 王平, 段树岭, 等, 2015. 航磁梯度数据曲化平分析. 地球物理学进展, 30(6): 2836-2840. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506051.htm
|
张婉, 张玄杰, 佟晶, 等, 2018. 日照-连云港地区重磁异常特征及其构造意义. 地球科学, 43(12): 4490-4497. doi: 10.3799/dqkx.2018.518
|