Citation: | Li Yan, Wang Jiale, Jin Menggui, Ma Hekuan, Liu Haoran, Peng Tao, 2021. Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data. Earth Science, 46(7): 2583-2593. doi: 10.3799/dqkx.2020.236 |
Chen, H. H., Zhu, Y. F., Zhou, S. Z., 2002. Aligned Indicator Conditional Simulation of Probability of Karst-Fissure Media in Karst Area of North. Earth Science, 27(2): 168-172(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200202011.htm
|
Chen, Z. H., Grasby, S. E., Osadetz, K. G., 2004. Relation between Climate Variability and Groundwater Levels in the Upper Carbonate Aquifer, Southern Manitoba, Canada. Journal of Hydrology, 290(1/2): 43-62. https://doi.org/10.1016/j.jhydrol.2003.11.029
|
Chi, G. Y., 2019. Identification of Dominant Seepage Channel in Jinan Karst Springs(Dissertation). University of Ji'nan, Ji'nan(in Chinese with English abstract).
|
Delbart, C., Valdes, D., Barbecot, F., et al., 2014. Temporal Variability of Karst Aquifer Response Time Established by the Sliding-Windows Cross-Correlation Method. Journal of Hydrology, 511(6): 580-588. https://doi.org/10.1016/j.jhydrol.2014.02.008
|
Francesco, F., Doglioni, A., 2010. The Relation between Karst Spring Discharge and Rainfall by Cross-Correlation Analysis (Campania, Southern Italy). Hydrogeology Journal, 18(8): 1881-1895. https://doi.org/10.1007/s10040-010-0666-1
|
Gárfias-Soliz, J., Llanos-Acebo, H., Martel, R., 2010. Time Series and Stochastic Analyses to Study the Hydrodynamic Characteristics of Karstic Aquifers. Hydrological Processes, 24(3): 300-316. https://doi.org/10.1002/hyp.7487
|
Guo, Y., Qin, D. J., Li, L., et al., 2019. A Complicated Karst Spring System: Identified by Karst Springs Using Water Level, Hydrogeochemical, and Isotopic Data in Jinan, China. Water, 11(5): 947. https://doi.org/10.3390/w11050947
|
Kang, F. X., Jin, M. G., Qin, P. R., 2011. Sustainable Yield of a Karst Aquifer System: A Case Study of Jinan Springs in Northern China. Hydrogeology Journal, 19(4): 851-863. https://doi.org/10.1007/s10040-011-0725-2
|
Katsanou, K., Lambrakis, N., Tayfur, G., et al., 2015. Describing the Karst Evolution by the Exploitation of Hydrologic Time-Series Data. Water Resources Management, 29(9): 3131-3147. https://doi.org/10.1007/s11269-015-0987-x
|
Katz, B. G., DeHan, R. S., Hirten, J. J., et al., 1997. Interactions between Ground Water and Surface Water in the Suwannee River Basin, Florida. Journal of the American Water Resources Association, 33(6): 1237-1254. https://doi.org/10.1111/j.1752-1688.1997.tb03549.x
|
Lambrakis, N., Andreou, A. S., Polydoropoulos, P., et al., 2000. Nonlinear Analysis and Forecasting of a Brackish Karstic Spring. Water Resources Research, 36(4): 875-884. https://doi.org/10.1029/1999wr900353
|
Larocque, M., Mangin, A., Razack, M., et al., 1998. Contribution of Correlation and Spectral Analyses to the Regional Study of a Large Karst Aquifer (Charente, France). Journal of Hydrology, 205(3/4): 217-231. https://doi.org/10.1016/s0022-1694(97)00155-8
|
Lee, J. Y., Lee, K. K., 2000. Use of Hydrologic Time Series Data for Identification of Recharge Mechanism in a Fractured Bedrock Aquifer System. Journal of Hydrology, 229(3/4): 190-201. https://doi.org/10.1016/s0022-1694(00)00158-x
|
Li, C. S., Wu, X. C., Sun, B., 2018. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji'nan. Earth Science, 43(Suppl.1): 313-325(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1027.htm
|
Liu, J., Liu, D., 2010. Research on the Response Feature of Tunnel Inflow to Precipitation in a Karstic Area. Coal Geology & Exploration, (2): 32-35(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT201002009.htm
|
Liu, L. H., Chen, X. H., Xu, G. Q., et al., 2011. Use of Hydrologic Time-Series Data for Identification of Hydrodynamic Function and Behavior in a Karstic Water System in China. Hydrogeology Journal, 19(8): 1577-1585. https://doi.org/10.1007/s10040-011-0774-6
|
Mangin, A., 1984. Better Knowledge Water Systems from Spectral and Correlation Analysis. Journal of Hydrology, 67: 25-43. doi: 10.1016/0022-1694(84)90230-0
|
Massei, N., Dupont, J. P., Mahler, B. J., et al., 2006. Investigating Transport Properties and Turbidity Dynamics of a Karst Aquifer Using Correlation, Spectral, and Wavelet Analyses. Journal of Hydrology, 329(1/2): 244-257. https://doi.org/10.1016/j.jhydrol.2006.02.021
|
Mathevet, T., Lepiller, M. L., Mangin, A., 2004. Application of Time-Series Analyses to the Hydrological Functioning of an Alpine Karstic System: The Case of Bange-L'Eau-Morte. Hydrology and Earth System Sciences, 8(6): 1051-1064. https://doi.org/10.5194/hess-8-1051-2004
|
Padilla, A., 1995. Study of Hydrographs of Karstic Aquifers by Means of Correlation and Cross-Spectral Analysis. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(1): A8. https://doi.org/10.1016/0148-9062(96)87402-x
|
Panagopoulos, G., Lambrakis, N., 2006. The Contribution of Time Series Analysis to the Study of the Hydrodynamic Characteristics of the Karst Systems: Application on Two Typical Karst Aquifers of Greece (Trifilia, Almyros Crete). Journal of Hydrology, 329(3/4): 368-376. https://doi.org/10.1016/j.jhydrol.2006.02.023
|
Qi, X. F., Yang, L. Z., Han, Y., et al., 2012. Cross Wavelet Analysis of Groundwater Level Regimes and Precipitation-Groundwater Level Regime in Ji'nan Spring Region. Advances in Earth Science, 27(9): 969-978(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201209007.htm
|
Qian, J. Z., Zhan, H. B., Wu, Y. F., et al., 2006. Fractured-Karst Spring-Flow Protections: A Case Study in Jinan, China. Hydrogeology Journal, 14(7): 1192-1205. https://doi.org/10.1007/s10040-006-0061-0
|
Rahnemaei, M., Zare, M., Nematollahi, A. R., et al., 2005. Application of Spectral Analysis of Daily Water Level and Spring Discharge Hydrographs Data for Comparing Physical Characteristics of Karstic Aquifers. Journal of Hydrology, 311(1/2/3/4): 106-116. https://doi.org/10.1016/j.jhydrol.2005.01.011
|
Sun, B., Peng, Y. M., 2014. Boundary Condition, Water Cycle and Water Environment Changes in the Ji'nan Spring Region. Carsologica Sinica, 33(3): 272-279(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201403003.htm
|
Wang, J. L., Jin, M. G., Lu, G. P., et al., 2016. Investigation of Discharge-Area Groundwaters for Recharge Source Characterization on Different Scales: The Case of Jinan in Northern China. Hydrogeology Journal, 24(7): 1723-1737. https://doi.org/10.1007/s10040-016-1428-5
|
Wang, J. Y., Wang, J. L., Jin, M. G., 2017. Hydrochemical Characteristics and Formation Causes of Karst Water in Jinan Spring Catchment. Earth Science, 42(5): 821-831(in Chinese with English abstract).
|
Wang, Q. B., Duan, X. M., Gao, Z. D., et al., 2009. Groundwater Flow Modelling in the Ji'nan Karst Spring Area. Hydrogeology & Engineering Geology, 36(5): 53-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200905015.htm
|
Xing, L. T., Li C. S., Zhou J., et al., 2017. The Characteristics of Karst Channel in the Spring of Ji'nan Spring Region. Science Technology and Engineering, 17(17): 57-65(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXJS201717005.htm
|
Yuan, D. X., 1993. Karstology in China. Geological Press, Beijing, 1-8(in Chinese).
|
Zhang, J. G., Chen, H. H., Zhu, Y. F., et al., 2004. Study on the Method Multiply-Indicator Kriging in Karst-Fissure Medium in Jinan. Hydrogeology & Engineering Geology, (2): 25-28(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/swdzgcdz200402006
|
Zheng, X., Chen, X., Zhang, Z. C., 2014. Rainfall-Runoff Response Characteristic Analysis of Chenqi Karst Watershed in Southern China. Earth and Environment, 42(2): 221-227(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-environment_thesis/0201253201654.html
|
迟光耀, 2019. 济南岩溶大泉优势渗流通道识别(硕士学位论文). 济南: 济南大学.
|
陈鸿汉, 朱远峰, 邹胜章, 2002. 中国北方岩溶区含水岩溶裂隙介质的序列指示模拟研究. 地球科学, 27(2): 168-172. doi: 10.3321/j.issn:1000-2383.2002.02.008
|
刘建, 刘丹, 2010. 岩溶隧道涌水对降雨的响应特征. 煤田地质与勘探, (2): 32-35. doi: 10.3969/j.issn.1001-1986.2010.02.008
|
李常锁, 武显仓, 孙斌, 等, 2018. 济南北部地热水水化学特征及其形成机理. 地球科学, 43(增刊1): 313-325. doi: 10.3799/dqkx.2018.206
|
祁晓凡, 杨丽芝, 韩晔, 2012. 济南泉域地下水位动态及其对降水响应的交叉小波分析. 地球科学进展, (9): 969-978. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201209007.htm
|
孙斌, 彭玉明, 2014. 济南泉域边界条件、水循环特征及水环境问题. 中国岩溶, 33(3): 272-279. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201403003.htm
|
王珺瑜, 王家乐, 靳孟贵, 2017. 济南泉域岩溶水水化学特征及其成因. 地球科学, 42(5): 821-831. doi: 10.3799/dqkx.2017.070
|
王庆兵, 段秀铭, 高赞东, 等, 2009. 济南岩溶泉域地下水流模拟. 水文地质工程地质, 36(5): 53-60. doi: 10.3969/j.issn.1000-3665.2009.05.013
|
邢立亭, 李常锁, 周娟, 等, 2017. 济南泉域岩溶径流通道特征. 科学技术与工程, 17(17): 57-65. doi: 10.3969/j.issn.1671-1815.2017.17.005
|
袁道先, 1993. 中国岩溶学. 北京: 地质出版社, 1-8.
|
郑雪, 陈喜, 张志才, 2014. 贵州普定陈旗喀斯特泉的降雨-径流响应特征分析. 地球与环境, 42(2): 221-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201402014.htm
|
张建国, 陈鸿汉, 朱远峰, 等, 2004. 济南泉域岩溶裂隙介质的多重指示克里格法研究. 水文地质工程地质, (2): 25-28. doi: 10.3969/j.issn.1000-3665.2004.02.006
|