• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 7
    Jul.  2021
    Turn off MathJax
    Article Contents
    Li Yan, Wang Jiale, Jin Menggui, Ma Hekuan, Liu Haoran, Peng Tao, 2021. Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data. Earth Science, 46(7): 2583-2593. doi: 10.3799/dqkx.2020.236
    Citation: Li Yan, Wang Jiale, Jin Menggui, Ma Hekuan, Liu Haoran, Peng Tao, 2021. Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data. Earth Science, 46(7): 2583-2593. doi: 10.3799/dqkx.2020.236

    Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data

    doi: 10.3799/dqkx.2020.236
    • Received Date: 2020-08-12
    • Publish Date: 2021-07-15
    • Karst aquifers are characterized by highheterogeneity and spatial variability of their media. Time-series analysis of precipitation and waterlevel (as input and output functions), including correlation, spectrum analysis, were applied to the Jinan karst spring system in Shandong Province, in order to study the hydrodynamic behavior and hydraulic properties of the aquifer system. Autocorrelation and cross-correlation analysis showed that the sensitivity of the system to precipitation input signal decreased gradually from the recharge area to the discharge area, but the memory effect increased gradually. Phase analysis results show that the response of water level to precipitation signal in Jinan spring area lags behind. The lag time from recharge area to discharge area gradually prolongs, and the recharge area has better linear correlation. The results show that the quick flow accounts for about 20%-30% of the subsurface flow in the recharge zone, and the ratio is reduced to 2.5%-10.0% in the discharge zone. The fluctuation of water level in karst system is mainly affected by the internal structure of karstic medium. The karstification degree of the aquifer in Jinan is fairly low, and groundwater movement is dominated by matrix flow.

       

    • loading
    • Chen, H. H., Zhu, Y. F., Zhou, S. Z., 2002. Aligned Indicator Conditional Simulation of Probability of Karst-Fissure Media in Karst Area of North. Earth Science, 27(2): 168-172(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200202011.htm
      Chen, Z. H., Grasby, S. E., Osadetz, K. G., 2004. Relation between Climate Variability and Groundwater Levels in the Upper Carbonate Aquifer, Southern Manitoba, Canada. Journal of Hydrology, 290(1/2): 43-62. https://doi.org/10.1016/j.jhydrol.2003.11.029
      Chi, G. Y., 2019. Identification of Dominant Seepage Channel in Jinan Karst Springs(Dissertation). University of Ji'nan, Ji'nan(in Chinese with English abstract).
      Delbart, C., Valdes, D., Barbecot, F., et al., 2014. Temporal Variability of Karst Aquifer Response Time Established by the Sliding-Windows Cross-Correlation Method. Journal of Hydrology, 511(6): 580-588. https://doi.org/10.1016/j.jhydrol.2014.02.008
      Francesco, F., Doglioni, A., 2010. The Relation between Karst Spring Discharge and Rainfall by Cross-Correlation Analysis (Campania, Southern Italy). Hydrogeology Journal, 18(8): 1881-1895. https://doi.org/10.1007/s10040-010-0666-1
      Gárfias-Soliz, J., Llanos-Acebo, H., Martel, R., 2010. Time Series and Stochastic Analyses to Study the Hydrodynamic Characteristics of Karstic Aquifers. Hydrological Processes, 24(3): 300-316. https://doi.org/10.1002/hyp.7487
      Guo, Y., Qin, D. J., Li, L., et al., 2019. A Complicated Karst Spring System: Identified by Karst Springs Using Water Level, Hydrogeochemical, and Isotopic Data in Jinan, China. Water, 11(5): 947. https://doi.org/10.3390/w11050947
      Kang, F. X., Jin, M. G., Qin, P. R., 2011. Sustainable Yield of a Karst Aquifer System: A Case Study of Jinan Springs in Northern China. Hydrogeology Journal, 19(4): 851-863. https://doi.org/10.1007/s10040-011-0725-2
      Katsanou, K., Lambrakis, N., Tayfur, G., et al., 2015. Describing the Karst Evolution by the Exploitation of Hydrologic Time-Series Data. Water Resources Management, 29(9): 3131-3147. https://doi.org/10.1007/s11269-015-0987-x
      Katz, B. G., DeHan, R. S., Hirten, J. J., et al., 1997. Interactions between Ground Water and Surface Water in the Suwannee River Basin, Florida. Journal of the American Water Resources Association, 33(6): 1237-1254. https://doi.org/10.1111/j.1752-1688.1997.tb03549.x
      Lambrakis, N., Andreou, A. S., Polydoropoulos, P., et al., 2000. Nonlinear Analysis and Forecasting of a Brackish Karstic Spring. Water Resources Research, 36(4): 875-884. https://doi.org/10.1029/1999wr900353
      Larocque, M., Mangin, A., Razack, M., et al., 1998. Contribution of Correlation and Spectral Analyses to the Regional Study of a Large Karst Aquifer (Charente, France). Journal of Hydrology, 205(3/4): 217-231. https://doi.org/10.1016/s0022-1694(97)00155-8
      Lee, J. Y., Lee, K. K., 2000. Use of Hydrologic Time Series Data for Identification of Recharge Mechanism in a Fractured Bedrock Aquifer System. Journal of Hydrology, 229(3/4): 190-201. https://doi.org/10.1016/s0022-1694(00)00158-x
      Li, C. S., Wu, X. C., Sun, B., 2018. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji'nan. Earth Science, 43(Suppl.1): 313-325(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1027.htm
      Liu, J., Liu, D., 2010. Research on the Response Feature of Tunnel Inflow to Precipitation in a Karstic Area. Coal Geology & Exploration, (2): 32-35(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT201002009.htm
      Liu, L. H., Chen, X. H., Xu, G. Q., et al., 2011. Use of Hydrologic Time-Series Data for Identification of Hydrodynamic Function and Behavior in a Karstic Water System in China. Hydrogeology Journal, 19(8): 1577-1585. https://doi.org/10.1007/s10040-011-0774-6
      Mangin, A., 1984. Better Knowledge Water Systems from Spectral and Correlation Analysis. Journal of Hydrology, 67: 25-43. doi: 10.1016/0022-1694(84)90230-0
      Massei, N., Dupont, J. P., Mahler, B. J., et al., 2006. Investigating Transport Properties and Turbidity Dynamics of a Karst Aquifer Using Correlation, Spectral, and Wavelet Analyses. Journal of Hydrology, 329(1/2): 244-257. https://doi.org/10.1016/j.jhydrol.2006.02.021
      Mathevet, T., Lepiller, M. L., Mangin, A., 2004. Application of Time-Series Analyses to the Hydrological Functioning of an Alpine Karstic System: The Case of Bange-L'Eau-Morte. Hydrology and Earth System Sciences, 8(6): 1051-1064. https://doi.org/10.5194/hess-8-1051-2004
      Padilla, A., 1995. Study of Hydrographs of Karstic Aquifers by Means of Correlation and Cross-Spectral Analysis. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(1): A8. https://doi.org/10.1016/0148-9062(96)87402-x
      Panagopoulos, G., Lambrakis, N., 2006. The Contribution of Time Series Analysis to the Study of the Hydrodynamic Characteristics of the Karst Systems: Application on Two Typical Karst Aquifers of Greece (Trifilia, Almyros Crete). Journal of Hydrology, 329(3/4): 368-376. https://doi.org/10.1016/j.jhydrol.2006.02.023
      Qi, X. F., Yang, L. Z., Han, Y., et al., 2012. Cross Wavelet Analysis of Groundwater Level Regimes and Precipitation-Groundwater Level Regime in Ji'nan Spring Region. Advances in Earth Science, 27(9): 969-978(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201209007.htm
      Qian, J. Z., Zhan, H. B., Wu, Y. F., et al., 2006. Fractured-Karst Spring-Flow Protections: A Case Study in Jinan, China. Hydrogeology Journal, 14(7): 1192-1205. https://doi.org/10.1007/s10040-006-0061-0
      Rahnemaei, M., Zare, M., Nematollahi, A. R., et al., 2005. Application of Spectral Analysis of Daily Water Level and Spring Discharge Hydrographs Data for Comparing Physical Characteristics of Karstic Aquifers. Journal of Hydrology, 311(1/2/3/4): 106-116. https://doi.org/10.1016/j.jhydrol.2005.01.011
      Sun, B., Peng, Y. M., 2014. Boundary Condition, Water Cycle and Water Environment Changes in the Ji'nan Spring Region. Carsologica Sinica, 33(3): 272-279(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201403003.htm
      Wang, J. L., Jin, M. G., Lu, G. P., et al., 2016. Investigation of Discharge-Area Groundwaters for Recharge Source Characterization on Different Scales: The Case of Jinan in Northern China. Hydrogeology Journal, 24(7): 1723-1737. https://doi.org/10.1007/s10040-016-1428-5
      Wang, J. Y., Wang, J. L., Jin, M. G., 2017. Hydrochemical Characteristics and Formation Causes of Karst Water in Jinan Spring Catchment. Earth Science, 42(5): 821-831(in Chinese with English abstract).
      Wang, Q. B., Duan, X. M., Gao, Z. D., et al., 2009. Groundwater Flow Modelling in the Ji'nan Karst Spring Area. Hydrogeology & Engineering Geology, 36(5): 53-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200905015.htm
      Xing, L. T., Li C. S., Zhou J., et al., 2017. The Characteristics of Karst Channel in the Spring of Ji'nan Spring Region. Science Technology and Engineering, 17(17): 57-65(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXJS201717005.htm
      Yuan, D. X., 1993. Karstology in China. Geological Press, Beijing, 1-8(in Chinese).
      Zhang, J. G., Chen, H. H., Zhu, Y. F., et al., 2004. Study on the Method Multiply-Indicator Kriging in Karst-Fissure Medium in Jinan. Hydrogeology & Engineering Geology, (2): 25-28(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/swdzgcdz200402006
      Zheng, X., Chen, X., Zhang, Z. C., 2014. Rainfall-Runoff Response Characteristic Analysis of Chenqi Karst Watershed in Southern China. Earth and Environment, 42(2): 221-227(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-environment_thesis/0201253201654.html
      迟光耀, 2019. 济南岩溶大泉优势渗流通道识别(硕士学位论文). 济南: 济南大学.
      陈鸿汉, 朱远峰, 邹胜章, 2002. 中国北方岩溶区含水岩溶裂隙介质的序列指示模拟研究. 地球科学, 27(2): 168-172. doi: 10.3321/j.issn:1000-2383.2002.02.008
      刘建, 刘丹, 2010. 岩溶隧道涌水对降雨的响应特征. 煤田地质与勘探, (2): 32-35. doi: 10.3969/j.issn.1001-1986.2010.02.008
      李常锁, 武显仓, 孙斌, 等, 2018. 济南北部地热水水化学特征及其形成机理. 地球科学, 43(增刊1): 313-325. doi: 10.3799/dqkx.2018.206
      祁晓凡, 杨丽芝, 韩晔, 2012. 济南泉域地下水位动态及其对降水响应的交叉小波分析. 地球科学进展, (9): 969-978. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201209007.htm
      孙斌, 彭玉明, 2014. 济南泉域边界条件、水循环特征及水环境问题. 中国岩溶, 33(3): 272-279. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201403003.htm
      王珺瑜, 王家乐, 靳孟贵, 2017. 济南泉域岩溶水水化学特征及其成因. 地球科学, 42(5): 821-831. doi: 10.3799/dqkx.2017.070
      王庆兵, 段秀铭, 高赞东, 等, 2009. 济南岩溶泉域地下水流模拟. 水文地质工程地质, 36(5): 53-60. doi: 10.3969/j.issn.1000-3665.2009.05.013
      邢立亭, 李常锁, 周娟, 等, 2017. 济南泉域岩溶径流通道特征. 科学技术与工程, 17(17): 57-65. doi: 10.3969/j.issn.1671-1815.2017.17.005
      袁道先, 1993. 中国岩溶学. 北京: 地质出版社, 1-8.
      郑雪, 陈喜, 张志才, 2014. 贵州普定陈旗喀斯特泉的降雨-径流响应特征分析. 地球与环境, 42(2): 221-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201402014.htm
      张建国, 陈鸿汉, 朱远峰, 等, 2004. 济南泉域岩溶裂隙介质的多重指示克里格法研究. 水文地质工程地质, (2): 25-28. doi: 10.3969/j.issn.1000-3665.2004.02.006
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (1572) PDF downloads(87) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return