• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 8
    Aug.  2021
    Turn off MathJax
    Article Contents
    Zhang Lin, Jin Menggui, Liu Yanfeng, Liang Xing, Yang Shiqi, Xian Yang, 2021. Concentration Variation Characteristics of Atmospheric Greenhouse Gases at Waliguan and Shangdianzi in China. Earth Science, 46(8): 2984-2998. doi: 10.3799/dqkx.2020.267
    Citation: Zhang Lin, Jin Menggui, Liu Yanfeng, Liang Xing, Yang Shiqi, Xian Yang, 2021. Concentration Variation Characteristics of Atmospheric Greenhouse Gases at Waliguan and Shangdianzi in China. Earth Science, 46(8): 2984-2998. doi: 10.3799/dqkx.2020.267

    Concentration Variation Characteristics of Atmospheric Greenhouse Gases at Waliguan and Shangdianzi in China

    doi: 10.3799/dqkx.2020.267
    • Received Date: 2020-07-13
      Available Online: 2021-09-14
    • Publish Date: 2021-08-15
    • Studying the changes of atmospheric greenhouse gases in typical regions will help effectively cope with climate change, slow global warming and reduce extreme climate events. In this paper, monthly data and the linear trend analysis method and Mann-Kendall mutation test method were used to analyze the characteristics of time series and seasonal variations of atmospheric greenhouse gases at Waliguan station during 1997-2018 and Shangdianzi station during 2009-2015. The HYSPLIT backward trajectory model was established to analyze the potential impacts of monsoon transportation and atmospheric boundary layer conditions on greenhouse gases. The greenhouse gases at both Waliguan and Shangdianzi stations significantly increased year by year, with obvious seasonal variations. Atmospheric CO2 at the two stations fell to the lowest in August, atmospheric CH4 reached peaks in August, and SF6 reached its maximum values in August and September, respectively. Atmospheric N2O at Waliguan station reached the highest in December and fell to the lowest in June, while atmospheric N2O at Shangdianzi station reached peaks in July and fell to its lowest in September. Atmospheric greenhouse gases at both Waliguan and Shangdianzi were affected by various factors such as local biological and non-biological sources, long-distance monsoon transportation, atmospheric boundary layer conditions and photochemical processes.

       

    • loading
    • Barry, R. G., Carleton, A. M., 2001. Synoptic and Dynamic Climatology. Taylor & Francis, London. https://doi.org/10.4324/9780203218181
      Easterling, D. R., Meehl, G. A., Parmesan, C., et al., 2000. Climate Extremes: Observations, Modeling, and Impacts. Science, 289(5487): 2068-2074. https://doi.org/10.1126/science.289.5487.2068
      IPCC, 2013. Climate Change 2013: The Physical Science Basis. In: Stocker, T.F., Qin, D., Plattner, G.K., et al., eds., Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
      Kendall, M.G., 1975. Rank Correlation Methods (4th Edition). Charles Griffin, London.
      Liu, L. X., Zhou, L. X., Vaughn, B., et al., 2014. Background Variations of Atmospheric CO2 and Carbon-Stable Isotopes at Waliguan and Shangdianzi Stations in China. Journal of Geophysical Research: Atmospheres, 119(9): 5602-5612. https://doi.org/10.1002/2013jd019605
      Mann, H. B., 1945. Nonparametric Tests against Trend. Econometrica, 13(3): 245-259. https://doi.org/10.2307/1907187
      Mu, L., Wu, D.X., Zhou, G., et al., 2007. Changes in Atlantic Thermohaline Circulation under Different Atmospheric CO2 Scenarios. Earth Science, 32(1): 141-146 (in Chinese with English abstract).
      National Climate Change Center, China Meteorological Administration, 2019. China Blue Book on Climate Change, 2019. National Climate Change Center, China Meteorological Administration, Beijing (in Chinese).
      NOAA, 2017. Trends in Atmospheric Carbon Dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html
      Oke, T. R., 2002. Boundary Layer Climates. Psychology Press, London. https://doi.org/10.4324/9780203407219
      Pu, W. W., Quan, W. J., Ma, Z. Q., et al., 2017. Long-Term Trend of Chemical Composition of Atmospheric Precipitation at a Regional Background Station in Northern China. Science of The Total Environment, 580: 1340-1350. https://doi.org/10.1016/j.scitotenv.2016.12.097
      Rolph, G., Stein, A., Stunder, B., 2017. Real-Time Environmental Applications and Display System: READY. Environmental Modelling & Software, 95: 210-228. https://doi.org/10.1016/j.envsoft.2017.06.025
      Shang, J., Yang, G., Yu, F.W., 2015. Agricultural Greenhouse Gases Emissions and Influencing Factors in China. Chinese Journal of Eco-Agriculture, 23(3): 354-364 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGTN201503012.htm
      Stein, A. F., Draxler, R. R., Rolph, G. D., et al., 2015. NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96(12): 2059-2077. https://doi.org/10.1175/bams-d-14-00110.1
      Stępalska, D., Myszkowska, D., Piotrowicz, K., et al., 2020. High Ambrosia Pollen Concentrations in Poland Respecting the Long Distance Transport (LDT). Science of The total Environment, 736: 139615. https://doi.org/10.1016/j.scitotenv.2020.139615
      Wang, J. X., Rothausen, S. G. S. A., Conway, D., et al., 2012. China's Water-Energy Nexus: Greenhouse-Gas Emissions from Groundwater Use for Agriculture. Environmental Research Letters, 7(1): 014035. https://doi.org/10.1088/1748-9326/7/1/014035
      Wang, Y. S., Zhou, L., Wang, M. X., et al., 2001. Trends of Atmospheric Methane in Beijing. Chemosphere-Global Change Science, 3(1): 65-71. https://doi.org/10.1016/s1465-9972(00)00022-2
      Wei, F. Y., 2007. Modern Climate Statistical Diagnosis and Prediction Technology. China Meteorological Press, Beijing (in Chinese).
      WMO, 2019. Greenhouse Gas Bulletin (GHG Bulletin): The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2018. https://library.wmo.int/doc_num.php?explnum_id=10100, 2019-11-25
      Xia, L.J., Zhou, L.X., Liu, L.X., et al., 2016. Monitoring Atmospheric CO2 and δ13C (CO2) Background Levels at Shangdianzi Station in Beijing, China. Environmental Science, 37(4): 1248-1255 (in Chinese with English abstract). http://www.researchgate.net/publication/304935113_Monitoring_atmospheric_CO2_and_d13CCO2_background_levels_at_Shangdianzi_station_in_Beijing_China
      Xing, Z.X., Yan, D.D., Liu, M.X., et al., 2015. Spatiotemporal Variability Analysis of Annual Precipitation in Sanjiang Plain in Recent Sixty Years. Transactions of the Chinese Society for Agricultural Machinery, 46(11): 337-344 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-NYJX201511046.htm
      Yang, Q., Guan, L., Tao, F., et al., 2018. Changes of CH4 Concentrations Obtained by Ground-Based Observations at Five Atmospheric Background Stations in China. Environmental Science & Technology, 41(6): 1-7 (in Chinese with English abstract).
      Zhang, D. Q., Tang, J., Shi, G. Y., et al., 2008. Temporal and Spatial Variations of the Atmospheric CO2 Concentration in China. Geophysical Research Letters, 35(3): L03801. https://doi.org/10.1029/2007gl032531
      Zhang, F., Zhou, L. X., Xu, L., 2013. Temporal Variation of Atmospheric CH4 and the Potential Source Regions at Waliguan, China. Scientia Sinica Terrae, 43(4): 536-546 (in Chinese). doi: 10.1360/zd-2013-43-4-536
      Zhang, X., Jiang, H., 2014. Spatial Variations in Methane Emissions from Natural Wetlands in China. International Journal of Environmental Science and Technology, 11: 77-86. https://doi.org/10.1007/s13762-013-0385-y
      Zhou, C., Shi, R.H., Gao, W., 2015. Comparison of Carbon Dioxide in Mid-Troposphere and Near-Surface. Journal of Geo-Information Science, 17(11): 1286-1293 (in Chinese with English abstract).
      Zhou, C., Shi, R. H., Liu, C. S., et al., 2013. A Correlation Analysis of Monthly Mean CO2 Retrieved from the Atmospheric Infrared Sounder with Surface Station Measurements. International Journal of Remote Sensing, 34(24): 8710-8723. https://doi.org/10.1080/01431161.2013.847295
      Zhou, L. X., White, J. W. C., Conway, T. J., et al., 2006. Long-Term Record of Atmospheric CO2 and Stable Isotopic Ratios at Waliguan Observatory: Seasonally Averaged 1991-2002 Source/Sink Signals, and a Comparison of 1998-2002 Record to the 11 Selected Sites in the Northern Hemisphere. Global Biogeochemical Cycles, 20(2): GB2001. https://doi.org/10.1029/2004gb002431
      Zhou, L.X., Zhou, X.J., Zhang, X.C., et al., 2007. Progress in the Study of Background Greenhouse Gases at Waliguan Observatory. Acta Meteorologica Sinica, 65(3): 458-468 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB200703013.htm
      牟林, 吴德星, 周刚, 等, 2007. 温室气体浓度增加情景下大西洋温盐环流的演变. 地球科学, 32(1): 141-146. http://www.earth-science.net/article/id/1677
      尚杰, 杨果, 于法稳, 2015. 中国农业温室气体排放量测算及影响因素研究. 中国生态农业学报, 23(3): 354-364. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201503012.htm
      魏风英, 2007. 现代气候统计诊断与预测技术. 北京: 气象出版社.
      夏玲君, 周凌晞, 刘立新, 等, 2016. 北京上甸子站大气CO2及δ13C(CO2)本底变化. 环境科学, 37(4): 1248-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201604009.htm
      邢贞相, 闫丹丹, 刘美鑫, 等, 2015. 三江平原近60年降水量时空变异特征分析. 农业机械学报, 46(11): 337-344. doi: 10.6041/j.issn.1000-1298.2015.11.046
      杨倩, 官莉, 陶法, 等, 2018. 中国5个大气本底站观测的CH4浓度变化规律. 环境科学与技术, 41(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201806001.htm
      张芳, 周凌晞, 许林, 2013. 瓦里关大气CH4浓度变化及其潜在源区分析. 中国科学: 地球科学, 43(4): 536-546. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201304005.htm
      中国气象局国家气候变化中心, 2019. 中国气候变化蓝皮书(2019). 北京: 中国气象局国家气候变化中心.
      周聪, 施润和, 高炜, 2015. 对流层中层与近地面大气二氧化碳浓度的比较研究. 地球信息科学学报, 17(11): 1286-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201511004.htm
      周凌晞, 周秀骥, 张晓春, 等, 2007. 瓦里关温室气体本底研究的主要进展. 气象学报, 65(3): 458-468. doi: 10.3321/j.issn:0577-6619.2007.03.014
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (1297) PDF downloads(90) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return