• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 11
    Nov.  2021
    Turn off MathJax
    Article Contents
    Jiang Liqun, Sun Ronglin, Liang Xing, 2021. Predicting Groundwater Flow and Transport in Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160. doi: 10.3799/dqkx.2020.268
    Citation: Jiang Liqun, Sun Ronglin, Liang Xing, 2021. Predicting Groundwater Flow and Transport in Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160. doi: 10.3799/dqkx.2020.268

    Predicting Groundwater Flow and Transport in Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods

    doi: 10.3799/dqkx.2020.268
    • Received Date: 2020-07-23
      Available Online: 2021-12-04
    • Publish Date: 2021-11-30
    • In order to investigate the effect of different hydraulic parameter estimation methods of the heterogenous aquifer on predicting groundwater flow and solute transport simulation, based on the laboratory heterogeneous aquifer sandbox, conventional equivalent homogeneous model, kriging and hydraulic tomography are used to characterize heterogeneity of the sandbox aquifer. The role of priori information on improving hydraulic tomography inversion is discussed. The K estimated by different methods are used to predict the process of steady-state groundwater flow and solute transport, which evaluates the merits and demerits of different K estimation methods. Afterwards, we investigate the effect of aquifer heterogeneity on groundwater flow and solute transport. The results reveal that compared with kriging, hydraulic tomography can get higher precision to characterize aquifer heterogeneity and predict the process of groundwater flow and solute transport. The K values from 40 core samples are used as prior information of hydraulic tomography can promote the accuracy of K estimates. The conventional equivalent homogeneous model cannot accurately predict the process of groundwater flow and solute transport in heterogeneous aquifer. The enhancement of aquifer heterogeneity will lead to the enhancement of the spatial variability of tracer distribution and migration path, and the dominant channel directly determines the migration path and tracer distribution.

       

    • loading
    • Bear, J., 1979. Hydraulics of Groundwater. McGraw Hill, New York.
      Berg, S. J., Illman, W. A., 2015. Comparison of Hydraulic Tomography with Traditional Methods at a Highly Heterogeneous Site. Groundwater, 53(1): 71-89. https://doi.org/10.1111/gwat.12159
      Bohling, G. C., Butler, J. J. Jr., Zhan, X., et al., 2007. A Field Assessment of the Value of Steady Shape Hydraulic Tomography for Characterization of Aquifer Heterogeneities. Water Resources Research, 43: W05430. https://doi.org/10.1029/2006WR004932
      Bruggeman, G. A., 1972. The Reciprocity Principle in Flow through Heterogeneous Porous Media. Developments in Soil Science, 2(2): 136-149. https://doi.org/10.1016/S0166-2481(08)70535-X
      Butler, J. J. Jr., Liu, W. Z., 1993. Pumping Tests in Nonuniform Aquifers: The Radially Asymmetric Case. Water Resources Research, 29(2): 259-269. https://doi.org/10.1029/92WR02128
      Chen, C. X., Lin, M., Cheng, J. M., 2011. Groundwater Dynamics. China University of Geosciences Press, Wuhan (in Chinese).
      Chen, X. L., Wen, Z., Hu, J. S., et al., 2016. Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations. Earth Science, 41(4): 701-710 (in Chinese with English abstract).
      Gong, S. R., Liu, C. P., Wang, Q., 2006. Digital Image Processing and Analysis. Tsinghua University Press, Beijing (in Chinese).
      Illman, W. A., Liu, X., Takeuchi, S., et al., 2009. Hydraulic Tomography in Fractured Granite: Mizunami Underground Research Site, Japan. Water Resources Research, 45: W01406. https://doi.org/10.1029/2007WR006715
      Illman, W. A., Zhu, J., Craig, A. J., et al., 2010. Comparison of Aquifer Characterization Approaches through Steady State Groundwater Model Validation: A Controlled Laboratory Sandbox Study. Water Resources Research, 46: W04502. https://doi.org/10.1029/2009WR007745
      Jiang, L. Q., Sun, R. L., Wang, W. M., et al., 2017. Comparison of Hydraulic Tomography and Kriging for Estimating Hydraulic Conductivity of a Heterogeneous Aquifer. Earth Science, 42(2): 307-314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201702012.htm
      Kalman, R. E., 1960. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1): 35-45. doi: 10.1115/1.3662552
      Liu, X., Illman, W. A., Craig, A. J., et al., 2007. Laboratory Sandbox Validation of Transient Hydraulic Tomography. Water Resources Research, 43: W05404. https://doi.org/10.1029/2006WR005144
      Shi, X. Q., Jiang, B. L., Bian, J. Y., et al., 2009. Geological Statistics for Estimating the Spatial Variability of Hydraulic Conductivity in the Third Confined Aquifer of Shanghai City. Geotechnical Investigation & Surveying, 37(1): 36-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC200901011.htm
      Shi, X. Q., Wu, J. C., Wu, J. F., et al., 2012. Effects of the Heterogeneity of Multiple Correlated Random Parameters on Solute Tansport. Advances in Water Science, 23(4): 509-515 (in Chinese with English abstract). doi: 10.1080/17461391.2010.536584?scroll=top&needAccess=true
      Shi, X. Q., Wu, J. C., Yuan, Y. S., et al., 2005. Study on the Spatial Variability of Hydraulic Conductivity. Advances in Water Science, (2): 210-215 (in Chinese with English abstract).
      Song, G., Wan, L., Hu, F. S., et al., 2005. Indicator Kriging of Spatial Distribution of Permeability of Aquifer. Earth Science Frontiers, 12(Suppl. ): 146-151 (in Chinese with English abstract). http://www.cqvip.com/QK/98047X/20051/15513676.html
      Tang, X. C., 2006. Wavelet Analysis and Application. Chongqing University Press, Chongqing (in Chinese).
      Tsang, C. F., 2000. Simulation of Groundwater Flow and Solute Transport in Heterogeneous Media-Problems and Challenges. Earth Science, 25(5): 443-450 (in Chinese with English abstract).
      Wang, J. S., 2013. The Effect of Model Uncertainty on the Characterization of Hydraulic Parameters Using Hydraulic Tomography (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Wang, K. J., Xiong, X. Y., Ren, Z., 2010. Highly Efficientmean Filtering Algorithm. Application Research of Computer, 27(2): 434-438 (in Chinese with English abstract). http://www.oalib.com/paper/1619454
      Wang, Y. X., 2007. Groundwater Contamination. Higher Education Press, Beijing (in Chinese).
      Xiang, J., Yeh, T.C. J., Lee, C.H., et al., 2009. A Simultaneous Successive Linear Estimator and a Guide for Hydraulic Tomography Analysis. Water Resources Research, 45: W02432. https://doi.org/10.1029/2008WR007180
      Xiao, M. G., Chen, X. J., Liu, B. C., 2003. Hydrogeology Parameter Calculation in Water Gushing Test of Constant Drawdown Yield in Infinite Confined Aquifer Where Gushing in the Main Hole is Observed from Several Other Holes. Earth Science, 28(5): 575-578 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX200305017.htm
      Yeh, T.C. J., Liu, S., 2000. Hydraulic Tomography: Development of a New Aquifer Test Method. Water Resources Research, 36(8): 2095-2105. https://doi.org/10.1029/2000WR900114
      Zhao, Z., Illman, W. A., Yeh, T. C. J., et al., 2015. Validation of Hydraulic Tomography in an Unconfined Aquifer: A Controlled Sandbox Study. Water Resources Research, 51: 4137-4155. https://doi.org/10.1002/2015WR016910
      Zhu, J., Yeh, T. C. J., 2006. Analysis of Hydraulic Tomography Using Temporal Moments of Drawdown Recovery Data. Water Resources Research, 42: W02403. https://doi.org/10.1029/2005WR004309
      陈崇希, 林敏, 成建梅, 2011. 地下水动力学. 武汉: 中国地质大学出版社.
      陈晓恋, 文章, 胡金山, 等, 2016. 解析法与数值法在水电站防渗墙效果评价中的运用. 地球科学, 41(4): 701-710. doi: 10.3799/dqkx.2016.059
      龚声蓉, 刘纯平, 王强, 2006. 数字图像处理与分析. 北京: 清华大学出版社.
      蒋立群, 孙蓉琳, 王文梅, 等, 2017. 水力层析法与克立金法估算非均质含水层渗透系数场比较. 地球科学, 42(2): 307-314. doi: 10.3799/dqkx.2017.023
      施小清, 姜蓓蕾, 卞锦宇, 等, 2009. 以地质统计方法推估上海第三承压含水层渗透系数的分布. 工程勘察, 37(1): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200901011.htm
      施小清, 吴吉春, 吴剑锋, 等, 2012. 多个相关随机参数的空间变异性对溶质运移的影响. 水科学进展, 23(4): 509-515. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201204008.htm
      施小清, 吴吉春, 袁永生, 2005. 渗透系数空间变异性研究. 水科学进展, (2): 210-215. doi: 10.3321/j.issn:1001-6791.2005.02.010
      宋刚, 万力, 胡伏生, 等, 2005. 含水层渗透性空间分布的指示克里格估值. 地学前缘, 12(Suppl. ): 146-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2005S100O.htm
      唐晓初, 2006. 小波分析及其应用. 重庆: 重庆大学出版社.
      Tsang, C. F., 2000. 非均质介质中地下水流动与溶质运移模拟——问题与挑战. 地球科学, 25(5): 443-450. doi: 10.3321/j.issn:1000-2383.2000.05.001
      王江思, 2013. 模型不确定性对水力层析法刻画含水层非均质性的影响研究(硕士学位论文). 武汉: 中国地质大学.
      王科俊, 熊新炎, 任桢, 2010. 高效均值滤波算法. 计算机应用研究, 27(2): 434-438. doi: 10.3969/j.issn.1001-3695.2010.02.008
      王焰新, 2007. 地下水污染与防治. 北京: 高等教育出版社.
      肖明贵, 陈学军, 刘宝臣, 2003. 无限承压含水层中主孔涌水多孔观测定降深井流试验水文地质参数计算. 地球科学, 28(5): 575-578. doi: 10.3321/j.issn:1000-2383.2003.05.018
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (2012) PDF downloads(129) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return