• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 8
    Aug.  2021
    Turn off MathJax
    Article Contents
    Cao Le, Shen Jianmei, Nie Zhenlong, Meng Lingqun, Liu Min, Wang Zhe, 2021. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert. Earth Science, 46(8): 2973-2983. doi: 10.3799/dqkx.2020.273
    Citation: Cao Le, Shen Jianmei, Nie Zhenlong, Meng Lingqun, Liu Min, Wang Zhe, 2021. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert. Earth Science, 46(8): 2973-2983. doi: 10.3799/dqkx.2020.273

    Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert

    doi: 10.3799/dqkx.2020.273
    • Received Date: 2020-06-19
      Available Online: 2021-09-14
    • Publish Date: 2021-08-15
    • Understanding the isotopic characteristics of precipitation in desert is helpful to study the water cycle process in arid areas. According to the precipitation samples from 4 stations in the Badain Jaran Desert from 2015 to 2016, the temporal and spatial distribution characteristics and influencing factors of δ2H and δ18O were analyzed. The source of precipitation moisture was analyzed with the backward air mass trajectory model and the recycled moisture fractions were calculated with deuterium excess. The results show that the precipitations of δ2H and δ18O show seasonal effect, which are higher in summer and lower in winter. The precipitations of δ2H and δ18O in the hinterland of desert are more positive and d-excess is more negative than that in the surrounding mountainous areas, reflecting the stronger evaporation of precipitation in the hinterland. The annual precipitation is mainly from the westerly moisture, and the summer precipitation is affected by the southeast monsoon. The recycled moisture fraction in desert is 10.3%-10.9%, which is slightly larger than 8.5% of mountainous area; the recycled moisture accounts for 11.1% of the total evaporation, which reflects that the contribution of strong evaporation in desert to local precipitation is relatively limited.

       

    • loading
    • An, W. L., Hou, S. G., Zhang, Q., et al., 2017. Enhanced Recent Local Moisture Recycling on the Northwestern Tibetan Plateau Deduced from Ice Core Deuterium Excess Records. Journal of Geophysical Research: Atmospheres, 122(23): 1-16. https://doi.org/10.1002/2017jd027235
      Araguás-Araguás, L., Froehlich, K., Rozanski, K., 1998. Stable Isotope Composition of Precipitation over Southeast Asia. Journal of Geophysical Research: Atmospheres, 103(D22): 28721-28742. https://doi.org/10.1029/98jd02582
      Best, A. C., 1950. Empirical Formulae for the Terminal Velocity of Water Drops Falling through the Atmosphere. Quarterly Journal of the Royal Meteorological Society, 76(329): 302-311. https://doi.org/10.1002/qj.49707632905
      Chen, J. S., Li, L., Wang, J. Y., et al., 2004. Groundwater Maintains Dune Landscape. Nature, 432(7016): 459-460. https://doi.org/10.1038/432459a
      Chen, Z. Y., Qi, J. X., Zhang, Z. J., et al., 2010. Application of Isotope Hydrogeology Method in Typical Basins of North China. Science Press, Beijing (in Chinese).
      Clark, I. D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Springer-Verlag, Berlin.
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
      Froehlich, K., Kralik, M., Papesch, W., et al., 2008. Deuterium Excess in Precipitation of Alpine Regions-Moisture Recycling. Isotopes in Environmental and Health Studies, 44(1): 61-70. https://doi.org/10.1080/10256010801887208
      Gat, J. R., Bowser, C. J., Kendall, C., 1994. The Contribution of Evaporation from the Great Lakes to the Continental Atmosphere: Estimate Based on Stable Isotope Data. Geophysical Research Letters, 21(7): 557-560. https://doi.org/10.1029/94gl00069
      Gates, J. B., Edmunds, W. M., Darling, W. G., et al., 2008. Conceptual Model of Recharge to Southeastern Badain Jaran Desert Groundwater and Lakes from Environmental Tracers. Applied Geochemistry, 23(12): 3519-3534. https://doi.org/10.1016/j.apgeochem.2008.07.019
      Han, P.F., Wang, X.S., Hu, X.N., et al., 2018. Dynamic Relationship between Lake Surface Evaporation and Meteorological Factors in the Badain Jaran Desert. Arid Zone Research, 35(5): 1012-1020 (in Chinese with English abstract).
      Jiang, G. L., Nie, Z. L., Liu, Z., et al., 2021. OSL Ages and Its Hydrological Implications of Alluvial-Diluvia Deposits from the Southern Margin of Badain Jaran Desert. Earth Science, 46(5): 1829-1839 (in Chinese with English abstract).
      Jin, K., Rao, W. B., Tan, H. B., et al., 2018. H-O Isotopic and Chemical Characteristics of a Precipitation-Lake Water-Groundwater System in a Desert Area. Journal of Hydrology, 559: 848-860. https://doi.org/10.1016/j.jhydrol.2018.03.005
      Kinzer, G. D., Gunn, R., 1951. The Evaporation, Temperature and Thermal Relaxation-Time of Freely Falling Waterdrops. Journal of Meteorology, 8(2): 71-83. https://doi.org/10.1175/1520-0469(1951)0080071:tetatr>2.0.co;2 doi: 10.1175/1520-0469(1951)0080071:tetatr>2.0.co;2
      Kong, Y. L., Pang, Z. H., Froehlich, K., 2013. Quantifying Recycled Moisture Fraction in Precipitation of an Arid Region Using Deuterium Excess. Tellus B: Chemical and Physical Meteorology, 65(1): 19251. https://doi.org/10.3402/tellusb.v65i0.19251
      Li, Z. J., Li, Z. X., Yu, H. C., et al., 2019. Environmental Significance and Zonal Characteristics of Stable Isotope of Atmospheric Precipitation in Arid Central Asia. Atmospheric Research, 227: 24-40. https://doi.org/10.1016/j.atmosres.2019.04.022
      Li, Z. X., Feng, Q., Wang, Q. J., et al., 2016. Contributions of Local Terrestrial Evaporation and Transpiration to Precipitation Using δ18O and d-Excess as a Proxy in Shiyang Inland River Basin in China. Global and Planetary Change, 146: 140-151. https://doi.org/10.1016/j.gloplacha.2016.10.003
      Ma, N., Wang, N. A., Zhao, L. Q., et al., 2014. Observation of Mega-Dune Evaporation after Various Rain Events in the Hinterland of Badain Jaran Desert, China. Chinese Science Bulletin, 59(2): 162-170. https://doi.org/10.1007/s11434-013-0050-3
      Peng, H. D., Mayer, B., Norman, A. L., et al., 2005. Modelling of Hydrogen and Oxygen Isotope Compositions for Local Precipitation. Tellus B: Chemical and Physical Meteorology, 57(4): 273-282. https://doi.org/10.3402/tellusb.v57i4.16545
      Peng, T. R., Liu, K. K., Wang, C. H., et al., 2011. A Water Isotope Approach to Assessing Moisture Recycling in the Island-Based Precipitation of Taiwan: A Case Study in the Western Pacific. Water Resources Research, 47(8): W08507. https://doi.org/10.1029/2010wr009890
      Rao, W. B., Zhang, W. B., Yong, B., et al., 2018. Identifying the Source of Atmospheric Moisture over Arid Deserts Using Stable Isotopes (2H and 18O) in Precipitation. Hydrological Processes, 32(3): 436-449. https://doi.org/10.1002/hyp.11431
      Stein, A. F., Draxler, R. R., Rolph, G. D., et al., 2015. NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96(12): 2059-2077. https://doi.org/10.1175/bams-d-14-00110.1
      Stewart, M. K., 1975. Stable Isotope Fractionation Due to Evaporation and Isotopic Exchange of Falling Waterdrops: Applications to Atmospheric Processes and Evaporation of Lakes. Journal of Geophysical Research, 80(9): 1133-1146. https://doi.org/10.1029/jc080i009p01133
      Sun, C. J., Chen, W., Chen, Y. N., et al., 2020. Stable Isotopes of Atmospheric Precipitation and Its Environmental Drivers in the Eastern Chinese Loess Plateau, China. Journal of Hydrology, 581: 124404. https://doi.org/10.1016/j.jhydrol.2019.124404
      Trenberth, K. E., 1999. Atmospheric Moisture Recycling: Role of Advection and Local Evaporation. Journal of Climate, 12(5): 1368-1381. https://doi.org/10.1175/1520-0442(1999)0121368:amrroa>2.0.co;2 doi: 10.1175/1520-0442(1999)0121368:amrroa>2.0.co;2
      Wang, N.A., Ma, N., Chen, H.B., et al., 2013. A Preliminary Study of Precipitation Characteristics in the Hinterland of Badain Jaran Desert. Advances in Water Science, 24(2): 153-160 (in Chinese with English abstract).
      Wang, S. J., Zhang, M. J., Che, Y. J., et al., 2016. Influence of Below-Cloud Evaporation on Deuterium Excess in Precipitation of Arid Central Asia and Its Meteorological Controls. Journal of Hydrometeorology, 17(7): 1973-1984. https://doi.org/10.1175/jhm-d-15-0203.1
      Wang, X. S., Hu, X. N., Jin, X. M., et al., 2019. Hydrogeological Conditions and Groundwater Circulation Model of the Badain Jaran Desert. Science Press, Beijing (in Chinese).
      Wang, X. S., Zhou, Y. Y., 2018. Investigating the Mysteries of Groundwater in the Badain Jaran Desert, China. Hydrogeology Journal, 26(2): 1639-1655. https://doi.org/10.1007/s10040-018-1750-1
      Yu, W. S., Yao, T. D., Tian, L. D., et al., 2006. Relationships between δ18O in Summer Precipitation and Temperature and Moisture Trajectories at Muztagata, Western China. Science China Earth Sciences, 49(1): 27-35. https://doi.org/10.1007/s11430-004-5097-1
      Zhao, L. J., Liu, X. H., Wang, N. L., et al., 2019. Contribution of Recycled Moisture to Local Precipitation in the Inland Heihe River Basin. Agricultural and Forest Meteorology, 271: 316-335. https://doi.org/10.1016/j.agrformet.2019.03.014
      Zhao, L. J., Yin, L., Xiao, H. L., et al., 2011. Isotopic Evidence for the Moisture Origin and Composition of Surface Runoff in the Headwaters of the Heihe River Basin. Chinese Science Bulletin, 56(4-5): 406-415. https://doi.org/10.1007/s11434-010-4278-x
      Zhou, Y.Y., Wang, X.S., 2019. Numerical Simulation of Groundwater Evaporation in the Badain Jaran Desert of China. Hydrogeology & Engineering Geology, 46(5): 44-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201905008.htm
      Zhu, G. F., Guo, H. W., Qin, D. H., et al., 2019. Contribution of Recycled Moisture to Precipitation in the Monsoon Marginal Zone: Estimate Based on Stable Isotope Data. Journal of Hydrology, 569: 423-435. https://doi.org/10.1016/j.jhydrol.2018.12.014
      陈宗宇, 齐继祥, 张兆吉, 等, 2010. 北方典型盆地同位素水文地质学方法应用. 北京: 科学出版社.
      韩鹏飞, 王旭升, 胡晓农, 等, 2018. 巴丹吉林沙漠湖泊水面蒸发与气象要素的动态关系. 干旱区研究, 35(5): 1012-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201805002.htm
      姜高磊, 聂振龙, 刘哲, 等, 2020. 巴丹吉林沙漠南缘冲洪积物的光释光年代及其水文学意义. 地球科学, 46(5): 1829-1839. doi: 10.3799/dqkx.2020.148
      王乃昂, 马宁, 陈红宝, 等, 2013. 巴丹吉林沙漠腹地降水特征的初步分析. 水科学进展, 24(2): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201302000.htm
      王旭升, 胡晓农, 金晓媚, 等, 2019. 巴丹吉林沙漠的水文地质条件及地下水循环模式. 北京: 科学出版社.
      周燕怡, 王旭升, 2019. 巴丹吉林沙漠潜水蒸发的数值模拟研究. 水文地质工程地质, 46(5): 44-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201905008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(4)

      Article views (1341) PDF downloads(67) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return