Citation: | Cao Le, Shen Jianmei, Nie Zhenlong, Meng Lingqun, Liu Min, Wang Zhe, 2021. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert. Earth Science, 46(8): 2973-2983. doi: 10.3799/dqkx.2020.273 |
An, W. L., Hou, S. G., Zhang, Q., et al., 2017. Enhanced Recent Local Moisture Recycling on the Northwestern Tibetan Plateau Deduced from Ice Core Deuterium Excess Records. Journal of Geophysical Research: Atmospheres, 122(23): 1-16. https://doi.org/10.1002/2017jd027235
|
Araguás-Araguás, L., Froehlich, K., Rozanski, K., 1998. Stable Isotope Composition of Precipitation over Southeast Asia. Journal of Geophysical Research: Atmospheres, 103(D22): 28721-28742. https://doi.org/10.1029/98jd02582
|
Best, A. C., 1950. Empirical Formulae for the Terminal Velocity of Water Drops Falling through the Atmosphere. Quarterly Journal of the Royal Meteorological Society, 76(329): 302-311. https://doi.org/10.1002/qj.49707632905
|
Chen, J. S., Li, L., Wang, J. Y., et al., 2004. Groundwater Maintains Dune Landscape. Nature, 432(7016): 459-460. https://doi.org/10.1038/432459a
|
Chen, Z. Y., Qi, J. X., Zhang, Z. J., et al., 2010. Application of Isotope Hydrogeology Method in Typical Basins of North China. Science Press, Beijing (in Chinese).
|
Clark, I. D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Springer-Verlag, Berlin.
|
Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
|
Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
|
Froehlich, K., Kralik, M., Papesch, W., et al., 2008. Deuterium Excess in Precipitation of Alpine Regions-Moisture Recycling. Isotopes in Environmental and Health Studies, 44(1): 61-70. https://doi.org/10.1080/10256010801887208
|
Gat, J. R., Bowser, C. J., Kendall, C., 1994. The Contribution of Evaporation from the Great Lakes to the Continental Atmosphere: Estimate Based on Stable Isotope Data. Geophysical Research Letters, 21(7): 557-560. https://doi.org/10.1029/94gl00069
|
Gates, J. B., Edmunds, W. M., Darling, W. G., et al., 2008. Conceptual Model of Recharge to Southeastern Badain Jaran Desert Groundwater and Lakes from Environmental Tracers. Applied Geochemistry, 23(12): 3519-3534. https://doi.org/10.1016/j.apgeochem.2008.07.019
|
Han, P.F., Wang, X.S., Hu, X.N., et al., 2018. Dynamic Relationship between Lake Surface Evaporation and Meteorological Factors in the Badain Jaran Desert. Arid Zone Research, 35(5): 1012-1020 (in Chinese with English abstract).
|
Jiang, G. L., Nie, Z. L., Liu, Z., et al., 2021. OSL Ages and Its Hydrological Implications of Alluvial-Diluvia Deposits from the Southern Margin of Badain Jaran Desert. Earth Science, 46(5): 1829-1839 (in Chinese with English abstract).
|
Jin, K., Rao, W. B., Tan, H. B., et al., 2018. H-O Isotopic and Chemical Characteristics of a Precipitation-Lake Water-Groundwater System in a Desert Area. Journal of Hydrology, 559: 848-860. https://doi.org/10.1016/j.jhydrol.2018.03.005
|
Kinzer, G. D., Gunn, R., 1951. The Evaporation, Temperature and Thermal Relaxation-Time of Freely Falling Waterdrops. Journal of Meteorology, 8(2): 71-83. https://doi.org/10.1175/1520-0469(1951)0080071:tetatr>2.0.co;2 doi: 10.1175/1520-0469(1951)0080071:tetatr>2.0.co;2
|
Kong, Y. L., Pang, Z. H., Froehlich, K., 2013. Quantifying Recycled Moisture Fraction in Precipitation of an Arid Region Using Deuterium Excess. Tellus B: Chemical and Physical Meteorology, 65(1): 19251. https://doi.org/10.3402/tellusb.v65i0.19251
|
Li, Z. J., Li, Z. X., Yu, H. C., et al., 2019. Environmental Significance and Zonal Characteristics of Stable Isotope of Atmospheric Precipitation in Arid Central Asia. Atmospheric Research, 227: 24-40. https://doi.org/10.1016/j.atmosres.2019.04.022
|
Li, Z. X., Feng, Q., Wang, Q. J., et al., 2016. Contributions of Local Terrestrial Evaporation and Transpiration to Precipitation Using δ18O and d-Excess as a Proxy in Shiyang Inland River Basin in China. Global and Planetary Change, 146: 140-151. https://doi.org/10.1016/j.gloplacha.2016.10.003
|
Ma, N., Wang, N. A., Zhao, L. Q., et al., 2014. Observation of Mega-Dune Evaporation after Various Rain Events in the Hinterland of Badain Jaran Desert, China. Chinese Science Bulletin, 59(2): 162-170. https://doi.org/10.1007/s11434-013-0050-3
|
Peng, H. D., Mayer, B., Norman, A. L., et al., 2005. Modelling of Hydrogen and Oxygen Isotope Compositions for Local Precipitation. Tellus B: Chemical and Physical Meteorology, 57(4): 273-282. https://doi.org/10.3402/tellusb.v57i4.16545
|
Peng, T. R., Liu, K. K., Wang, C. H., et al., 2011. A Water Isotope Approach to Assessing Moisture Recycling in the Island-Based Precipitation of Taiwan: A Case Study in the Western Pacific. Water Resources Research, 47(8): W08507. https://doi.org/10.1029/2010wr009890
|
Rao, W. B., Zhang, W. B., Yong, B., et al., 2018. Identifying the Source of Atmospheric Moisture over Arid Deserts Using Stable Isotopes (2H and 18O) in Precipitation. Hydrological Processes, 32(3): 436-449. https://doi.org/10.1002/hyp.11431
|
Stein, A. F., Draxler, R. R., Rolph, G. D., et al., 2015. NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96(12): 2059-2077. https://doi.org/10.1175/bams-d-14-00110.1
|
Stewart, M. K., 1975. Stable Isotope Fractionation Due to Evaporation and Isotopic Exchange of Falling Waterdrops: Applications to Atmospheric Processes and Evaporation of Lakes. Journal of Geophysical Research, 80(9): 1133-1146. https://doi.org/10.1029/jc080i009p01133
|
Sun, C. J., Chen, W., Chen, Y. N., et al., 2020. Stable Isotopes of Atmospheric Precipitation and Its Environmental Drivers in the Eastern Chinese Loess Plateau, China. Journal of Hydrology, 581: 124404. https://doi.org/10.1016/j.jhydrol.2019.124404
|
Trenberth, K. E., 1999. Atmospheric Moisture Recycling: Role of Advection and Local Evaporation. Journal of Climate, 12(5): 1368-1381. https://doi.org/10.1175/1520-0442(1999)0121368:amrroa>2.0.co;2 doi: 10.1175/1520-0442(1999)0121368:amrroa>2.0.co;2
|
Wang, N.A., Ma, N., Chen, H.B., et al., 2013. A Preliminary Study of Precipitation Characteristics in the Hinterland of Badain Jaran Desert. Advances in Water Science, 24(2): 153-160 (in Chinese with English abstract).
|
Wang, S. J., Zhang, M. J., Che, Y. J., et al., 2016. Influence of Below-Cloud Evaporation on Deuterium Excess in Precipitation of Arid Central Asia and Its Meteorological Controls. Journal of Hydrometeorology, 17(7): 1973-1984. https://doi.org/10.1175/jhm-d-15-0203.1
|
Wang, X. S., Hu, X. N., Jin, X. M., et al., 2019. Hydrogeological Conditions and Groundwater Circulation Model of the Badain Jaran Desert. Science Press, Beijing (in Chinese).
|
Wang, X. S., Zhou, Y. Y., 2018. Investigating the Mysteries of Groundwater in the Badain Jaran Desert, China. Hydrogeology Journal, 26(2): 1639-1655. https://doi.org/10.1007/s10040-018-1750-1
|
Yu, W. S., Yao, T. D., Tian, L. D., et al., 2006. Relationships between δ18O in Summer Precipitation and Temperature and Moisture Trajectories at Muztagata, Western China. Science China Earth Sciences, 49(1): 27-35. https://doi.org/10.1007/s11430-004-5097-1
|
Zhao, L. J., Liu, X. H., Wang, N. L., et al., 2019. Contribution of Recycled Moisture to Local Precipitation in the Inland Heihe River Basin. Agricultural and Forest Meteorology, 271: 316-335. https://doi.org/10.1016/j.agrformet.2019.03.014
|
Zhao, L. J., Yin, L., Xiao, H. L., et al., 2011. Isotopic Evidence for the Moisture Origin and Composition of Surface Runoff in the Headwaters of the Heihe River Basin. Chinese Science Bulletin, 56(4-5): 406-415. https://doi.org/10.1007/s11434-010-4278-x
|
Zhou, Y.Y., Wang, X.S., 2019. Numerical Simulation of Groundwater Evaporation in the Badain Jaran Desert of China. Hydrogeology & Engineering Geology, 46(5): 44-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201905008.htm
|
Zhu, G. F., Guo, H. W., Qin, D. H., et al., 2019. Contribution of Recycled Moisture to Precipitation in the Monsoon Marginal Zone: Estimate Based on Stable Isotope Data. Journal of Hydrology, 569: 423-435. https://doi.org/10.1016/j.jhydrol.2018.12.014
|
陈宗宇, 齐继祥, 张兆吉, 等, 2010. 北方典型盆地同位素水文地质学方法应用. 北京: 科学出版社.
|
韩鹏飞, 王旭升, 胡晓农, 等, 2018. 巴丹吉林沙漠湖泊水面蒸发与气象要素的动态关系. 干旱区研究, 35(5): 1012-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201805002.htm
|
姜高磊, 聂振龙, 刘哲, 等, 2020. 巴丹吉林沙漠南缘冲洪积物的光释光年代及其水文学意义. 地球科学, 46(5): 1829-1839. doi: 10.3799/dqkx.2020.148
|
王乃昂, 马宁, 陈红宝, 等, 2013. 巴丹吉林沙漠腹地降水特征的初步分析. 水科学进展, 24(2): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201302000.htm
|
王旭升, 胡晓农, 金晓媚, 等, 2019. 巴丹吉林沙漠的水文地质条件及地下水循环模式. 北京: 科学出版社.
|
周燕怡, 王旭升, 2019. 巴丹吉林沙漠潜水蒸发的数值模拟研究. 水文地质工程地质, 46(5): 44-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201905008.htm
|