Citation: | Sun Houyun, Wei Xiaofeng, Sun Xiaoming, Jia Fengchao, Li Duojie, Li Jian, 2021. Element Migration and Accumulation Characteristics of Bedrock-Regolith-Soil-Fruit Plant Continuum of the Earth's Critical Zone in Chengde Almond Producing Area. Earth Science, 46(7): 2621-2645. doi: 10.3799/dqkx.2020.285 |
Alaimo, M. G., Dongarrà, G., La Rosa, A., et al., 2018. Major and Trace Elements in Boletus Aereus and Clitopilus Prunulus Growing on Volcanic and Sedimentary Soils of Sicily (Italy). Ecotoxicology and Environmental Safety, 157(2): 182-190. https://doi.org/10.1016/j.ecoenv.2018.03.080
|
Babechuk, M. G., Widdowson, M., Kamber, B. S., 2014. Quantifying Chemical Weathering Intensity and Trace Element Release from Two Contrasting Basalt Profiles, Deccan Traps, India. Chemical Geology, 363(7): 56-75. https://doi.org/10.1016/j.chemgeo.2013.10.027
|
Banwart, S., Menon, M., Bernasconi, S. M., et al., 2012. Soil Processes and Functions Across an International Network of Critical Zone Observatories: Introduction to Experimental Methods and Initial Results. Comptes Rendus Geoscience, 344(11/12): 758-772. https://doi.org/10.1016/j.crte.2012.10.007
|
Brantley, S. L., Goldhaber, M. B., Ragnarsdottir, K. V., 2007. Crossing Disciplines and Scales to Understand the Critical Zone. Elements, 3(5): 307-314. https://doi.org/10.2113/gselements.3.5.307
|
Chadwick, O. A., Brimhall, G. H., Hendricks, D. M., 1990. From a Black to a Gray Box: A Mass Balance Interpretation of Pedogenesis. Geomorphology, 3(3/4): 369-390. https://doi.org/10.1016/0169-555x(90)90012-f
|
Cheng, H. X., Peng, M., Zhao, C. D., et al., 2019. Epigenetic Geochemical Dynamics and Driving Mechanisms of Distribution Patterns of Chemical Elements in Soil, Southwest China. Earth Science Frontiers, 26(6): 159-191(in Chinese with English abstract).
|
Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
|
Dixon, J.L., Chadwick, O.A., Vitousek, P.M., et al., 2016. Climate-Driven Thresholds for Chemical Weathering in Postglacial Soils of New Zealand. Journal of Geophysical Research: Earth Surface, 121(9): 1619-1634. https://doi.org/10.1002/2016jf003864
|
Fang, Q., Hong, H. L., Zhao, L. L., et al., 2018. Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes. Earth Science, 43(3): 753-769(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201803007
|
Fedo, C. M., Nesbitt, H. W., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921. https://doi.org/10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2
|
Fu, W., Luo, P., Hu, Z. Y., et al., 2019. Enrichment of Ion-Exchangeable Rare Earth Elements by Felsic Volcanic Rock Weathering in South China: Genetic Mechanism and Formation Preference. Ore Geology Reviews, 114(1): 103120. https://doi.org/10.1016/j.oregeorev.2019.103120
|
Garzanti, E., Padoan, M., Setti, M., et al., 2014. Provenance Versus Weathering Control on the Composition of Tropical River Mud (Southern Africa). Chemical Geology, 366(77): 61-74. https://doi.org/10.1016/j.chemgeo.2013.12.016
|
Ge, W., 2013. Geochemical Environment of Soil and Suitability Evaluation on High-Quality Apple Production in Yantai Area, Shandong Province(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Gu, L.M.Y., Tao, X. D., Sun, S. W., et al., 2014. The Analysis of Baren Apricot Orchards Soil Fertilit Condition and Leaf Nutrition Level. Acta Agriculturae Boreali-Occidentalis Sinica, 23(9): 183-188 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB201419021.htm
|
Guo, A. H., Yang, K. T., Yao, Y. T., et al., 1997. Study on the Nutrient Cycle of the Apricot for the Almond. Forest Science and Technology, 22(6): 1-5 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LYKJ706.000.htm
|
Hewawasam, T., von Blanckenburg, F., Bouchez, J., et al., 2013. Slow Advance of the Weathering Front during Deep, Supply-Limited Saprolite Formation in the Tropical Highlands of Sri Lanka. Geochimica et Cosmochimica Acta, 118(2): 202-230. https://doi.org/10.1016/j.gca.2013.05.006
|
Hou, Z. X., Zhai, M. P., Yuan, M. D., et al., 2008. Progress of Cultivated and Physiological Researches on Kernel-Apricot (Armeniaca vulgaris Lam. ) in China. Chinese Agricultural Science Bulletin, 24(12): 189-192 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNTB200812043.htm
|
Kong, D. M., Shen, H. L., Yao, Y. T., 2004. The Relationships between Cu, Zn and Polyphenol Oxidase, Superoxide Dismutase Activities in Prunus armeriaca L. Journal of Northeast Forestry University, 32(6): 72-73 (in Chinese with English abstract).
|
Lee, J. S., Chon, H. T., Kim, K. W., 1998. Migration and Dispersion of Trace Elements in the Rock-Soil-Plant System in Areas Underlain by Black Shales and Slates of the Okchon Zone, Korea. Journal of Geochemical Exploration, 65(1): 61-78. https://doi.org/10.1016/s0375-6742(98)00054-5
|
Li, X. H., 2007. The Restriction and Influence Study of the Soil Geochemistry Condition for Lycium Barbarum L. (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Li, Z. J., 1996. Large Scale System of Rock-Soil-Plant. Geological Review, 42(04): 369-372(in Chinese with English abstract).
|
Liu, C. Q., 2007. Biogeochemical Processes and Cycling of Nutrients in the Earth's Surface: Cycling of Nutrients in Soil-Plant System of Karstic Environments, Southwest China. Science Press, Beijing (in Chinese).
|
Liu, J.L., Yao, Y. T., Yang, X. Q., 2002. Research on Polyphenoloxidase and Superoxide Dismutase of Kernel-Apricot. Shanxi Forestry Science and Technology, 31(2): 38-41 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-sxlk200202011.htm
|
Liu, P., Wu, J. Z., Yang, Y. A., 2000. The Research Development of Boron in Soil and Its Effect in Plant. Agro-Environmental Protection, 19(2): 119-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH200002018.htm
|
Liu, P., Yang, Y. A., 2001. Research Development of Molybdenum in Soil and Its Effects on Vegetation. Agro-Environmental Protection, 20 (4): 280-282 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh200104028
|
Ma, L., Jin, L. X., Brantley, S. L., 2011. How Mineralogy and Slope Aspect Affect REE Release and Fractionation during Shale Weathering in the Susquehanna/Shale Hills Critical Zone Observatory. Chemical Geology, 290(1/2): 31-49. https://doi.org/10.1016/j.chemgeo.2011.08.013
|
Ma, X. C., Wang, J. S., Chen, C., et al., 2018. Major Element Compositions and Paleoclimatic Implications of Paleo-Regolith on Top Jingeryu Formation in Fangshan, North China. Earth Science, 43(11): 3853-3872(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811005.htm
|
MacLean, W. H., 1990. Mass Change Calculations in Altered Rock Series. Mineralium Deposita, 25(1): 44-49. https://doi.org/10.1007/bf03326382
|
Martignier, L., Verrecchia, E. P., 2013. Weathering Processes in Superficial Deposits (regolith) and their Influence on Pedogenesis: A Case Study in the Swiss Jura Mountains. Geomorphology, 189: 26-40. https://doi.org/10.1016/j.geomorph.2012.12.038
|
Mendieta-Lora, M., Mejía-Ledezma, R. O., Kasper-Zubillaga, J. J., et al., 2018. Mineralogical and Geochemical Implications of Weathering Rates in Coastal Dunes and Beach Sands Close to a Volcanic Rock Source in the Western Gulf of Mexico, Mexico. Geochemistry, 78(3): 323-339. https://doi.org/10.1016/j.chemer.2018.06.004
|
Moses, C., Robinson, D., Barlow, J., 2014. Methods for Measuring Rock Surface Weathering and Erosion: A Critical Review. Earth-Science Reviews, 135(3-4): 141-161. https://doi.org/10.1016/j.earscirev.2014.04.006
|
Nesbitt, H. W., Young, G. M., 1984. Prediction of some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
|
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
|
Oeser, R. A., Stroncik, N., Moskwa, L. M., et al., 2018. Chemistry and Microbiology of the Critical Zone along a Steep Climate and Vegetation Gradient in the Chilean Coastal Cordillera. CATENA, 170: 183-203. https://doi.org/10.1016/j.catena.2018.06.002
|
Peng, B., Rate, A., Song, Z. L., et al., 2014. Geochemistry of Major and Trace Elements and Pb-Sr Isotopes of a Weathering Profile Developed on the Lower Cambrian Black Shales in Central Hunan, China. Applied Geochemistry, 51(15): 191-203. https://doi.org/10.1016/j.apgeochem.2014.09.007
|
Peng, B., Song, Z. L., Tu, X. L., et al., 2004. Release of Heavy Metals during Weathering of the Lower Cambrian Black Shales in Western Hunan, China. Environmental Geology, 45(8): 1137-1147. https://doi.org/10.1007/s00254-004-0974-7
|
Price, J. R., Velbel, M. A., 2003. Chemical Weathering Indices Applied to Weathering Profiles Developed on Heterogeneous Felsic Metamorphic Parent Rocks. Chemical Geology, 202(3/4): 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001
|
Qiu, S. F., Zhu, Z. Y., Yang, T., et al., 2014. Corrigendum to "Chemical Weathering of Monsoonal Eastern China: Implications from Major Elements of Topsoil". Journal of Asian Earth Sciences, 89: 141. https://doi.org/10.1016/j.jseaes.2013.12.004
|
Reimann, C., Englmaier, P., Fabian, K., et al., 2015. Biogeochemical Plant-Soil Interaction: Variable Element Composition in Leaves of Four Plant Species Collected along a South-North Transect at the Southern Tip of Norway. Science of the Total Environment, 506-507(4): 480-495. https://doi.org/10.1016/j.scitotenv.2014.10.079
|
Saracoglu, S., Tuzen, M., Soylak, M., 2009. Evaluation of Trace Element Contents of Dried Apricot Samples from Turkey. Journal of Hazardous Materials, 167(1/2/3): 647-652. https://doi.org/10.1016/j.jhazmat.2009.01.011
|
Song, Z.L., Peng, B., Liu, C.Q., et al., 2004. Discussion on Element Mobility and Reference Frame Selection during Black Shale Weathering: Example of Profiles from Matianand Taohuajiang in Hunan Province. Geological Science and Technology Information, 23(3): 25-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200403005.htm
|
Su, Y. Z., Zhao, H. L., 2003. Soil Properties and Plant Species in an Age Sequence of Caragana Microphylla Plantations in the Horqin Sandy Land, North China. Ecological Engineering, 20(3): 223-235. https://doi.org/10.1016/s0925-8574(03)00042-9
|
Sun, H. Y., Wei, X. F., Gan, F. W., et al., 2019. Determination of Heavy Metal Geochemical Baseline Values and Its Accumulation in Soils of the Luanhe River Basin, Chengde. Environment Science, 40(08): 3753-3763 (in Chinese with English abstract).
|
Sun, H. Y., Wei, X. F., Sun, H. Y., et al., 2020. Formation Mechanism and Geological Formation Constraints of Metasilicate Mineral Water in Yudaokou Hannuoba Basalt Area. Earth Science, 45(11): 4236-4253(in Chinese with English abstract).
|
Sun, S. W., Tao, X. D., Zhao, L., et al., 2014. The Analysis of Little White Apricot Leaf Nutrition and Orchards Soil Fertility Condition in Southern Xinjiang. Chinese Agricultural Science Bulletin, 30(19): 118-122(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB201419021.htm
|
Tang, K., Wang, X. Q., Chi, Q. H., et al., 2018. Concentration and Spatial Distribution of REE in Geochemical Transect of Xingmeng Orogenic Belt-North China Craton. Earth Science, 43(3): 655-671(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201803002.htm
|
Wang, W. J., Lv, L. X., Hao, J., Y., et al., 2019. Effects of N, P, K, Fertilizer Application Methods on Soil Nutrientsand Fruit Quality of Gongfo Apricot. Northern Horticulture, 10: 102-107(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-BFYY201910016.htm
|
Wang, X. Q., Zhou, J., Xu, S F., et al., 2016. China Soil Geochemical Baselines Networks: Data Characteristics. Geology in China, 43(5): 1469-1480(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201605001.htm
|
Wang, Z. L., Deng, T. D., Wang, R. M., et al., 2009. Characteristics of Migration and Accumulation of Rare Earth Elements in the Rock-Soil-Navel Orange System. Geology in China, 36(6): 1382-1394(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200906022.htm
|
Wu, B. J., Peng, B., Zhang, K., et al., 2016. A New Chemical Index of Identifying the Weathering Degree of Black Shales. Acta Geologica Sinica, 90(4): 818-832 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201604016&dbcode=CJFD&year=2016&dflag=pdfdown
|
Wu, X. Y., Ling, S. X., Ren, Y., et al., 2016. Elemental Migration Characteristics and Chemical Weathering Degree of Black Shale in Northeast Chongqing, China. Earth Science, 41(2): 218-233(in Chinese with English abstract). doi: 10.1007/s12303-016-0008-y
|
Wu Y. L., Xu M., Dong S. J., et al., 2019. Analysis of Nutritional Composition of Bitter Almond from Different Growing Areas. Science and Technology of Food Industry, 40(23): 300-305 (in Chinese with English abstract).
|
Wu, C.D., Chu, Z.Y., 2001. Sequential Extraction of Trace Elements and the Geological Significance of Fractionsin Black Shales, West Hunan and East Guizhou. Bulletin of Mineralogy, Petrology and Geochemistry, 20(1): 14-20(in Chinese with English abstract). http://www.cqvip.com/QK/84215X/20011/1001065108.html
|
Yan, H. Z, Zhou, G. H., Sun, B. B., et al., 2018. Geochemical Characteristics of the Bayberry Producing Area in Longhai, Fujian. Geology in China, 45(6): 1155-1166(in Chinese with English abstract). http://www.researchgate.net/publication/332712387_Geochemical_characteristics_of_the_bayberry_producing_area_in_LonghaiFujian
|
Yao, Y., Liu, J. M., Liu, Z. L., et al., 2019. Comparison on Armeniaca Sibirica Natural Forest Growth and Soil Physicochemical Properties in Different Slope Position. Forest Engineering, 35(6): 36-41+54(in Chinese with English abstract).
|
Yu, K. W., Murthy, H. N., Jeong, C. S., et al., 2005. Organic Germanium Stimulates the Growth of Ginseng Adventitious Roots and Ginsenoside Production. Process Biochemistry, 40(9): 2959-2961. https://doi.org/10.1016/j.procbio.2005.01.015
|
Zhai, Z. Y., Qiu, J., Si, H. Z., et al., 2019. Effects of Microtopography on Germination Layer Soil Factors in Armeniaca Vulgaris Lam. in Daxigou. Acta Ecologica Sinica, 39(6): 2168-2179(in Chinese with English abstract). http://www.researchgate.net/publication/332557965_Effects_of_microtopography_on_germination_layer_soil_factors_in_Armeniaca_vulgaris_Lam_in_Daxigou
|
Zhang, Z. C., Santosh, M., Li, J. W., 2015. Iron Deposits in Relation to Magmatism in China. Journal of Asian Earth Sciences, 113: 951-956. https://doi.org/10.1016/j.jseaes.2015.09.026
|
Zhou, D. X., Peng, B., Wang, Q., et al., 2020. Elemental Geochemical Characteristics of Soils Derived from the Lower-Cambrian Black Shales in the Western Yangtze Platform, China. Bulletin of Mineralogy, Petrology and Geochemistry, 39(1): 59-71(in Chinese with English abstract).
|
Zhu, L. X., Ma, S. M., Wang, Z. F., 2006. Soil Eco-Geochemical Baseline in Alluvial Plains of Eastern China. Geology in China, 33(6): 1400-1405(in Chinese with English abstract). http://www.researchgate.net/publication/287706672_Soil_eco-geochemical_baseline_in_alluvial_plains_of_eastern_China
|
Zhu, Y. G., Duan, G. L., Chen, B D., et al., 2004. Mineral Weathering and Element Cycling in Soil-Microorganism-Plant System. Science China: Earth Sciences, 44(6): 1107-1116(in Chinese with English abstract).
|
成杭新, 彭敏, 赵传冬, 等, 2019. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制. 地学前缘, 26(6): 159-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906021.htm
|
方谦, 洪汉烈, 赵璐璐, 等, 2018. 风化成土过程中自生矿物的气候指示意义. 地球科学, 43(3): 753-769. doi: 10.3799/dqkx.2018.905
|
葛文, 2013. 山东烟台地区土壤地球化学环境与优质苹果生产的适应性评价(博士学位论文). 武汉: 中国地质大学.
|
古丽米热, 陶秀冬, 孙守文, 等, 2014. 南疆地区巴仁杏果园土壤矿质元素与叶片营养水平分析. 西北农业学报, 23(9): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201409031.htm
|
郭爱华, 杨克听, 姚延梼, 等, 1997. 仁用杏营养元素循环研究. 林业科技, 22(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKJ706.000.htm
|
侯智霞, 翟明普, 原牡丹, 等, 2008. 中国仁用杏栽培生理研究进展. 中国农学通报, 24(12): 189-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200812043.htm
|
孔冬梅, 沈海龙, 姚延梼, 2004. 仁用杏铜锌元素与多酚氧化酶、超氧化物歧化酶活性的关系. 东北林业大学学报, 32(6): 72-73. doi: 10.3969/j.issn.1000-5382.2004.06.022
|
李新虎, 2007. 土壤地球化学环境对宁夏枸杞品质的制约影响研究(博士学位论文). 北京: 中国地质大学(北京).
|
李正积, 1996. 时代前缘的全息探索——岩土植物大系统研究. 地质论评, 42(4): 369-372. doi: 10.3321/j.issn:0371-5736.1996.04.015
|
刘丛强, 2007. 生物地球化学过程与地表物质循环-西南喀斯特流域侵蚀与生源要素循环. 北京: 科学出版社.
|
刘金龙, 姚延梼, 杨秀清, 2002. 仁用杏树多酚氧化酶和超氧化物歧化酶的研究. 山西林业科技, 31(2): 38-41. doi: 10.3969/j.issn.1007-726X.2002.02.011
|
刘鹏, 吴建之, 杨玉爱, 2000. 土壤中的硼及其植物效应的研究进展. 农业环境保护, 19(2): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200002018.htm
|
刘鹏, 杨玉爱, 2001. 土壤中的钼及其植物效应的研究进展. 农业环境保护, 20 (4): 280-282. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200104027.htm
|
马晓晨, 王家生, 陈粲, 等, 2018. 华北房山景儿峪组顶部古风化壳常量元素地球化学特征及其古气候意义. 地球科学, 43(11): 3853-3872. doi: 10.3799/dqkx.2018.235
|
宋照亮, 彭渤, 刘丛强, 2004. 黑色页岩风化过程中元素的活动性及参考系的选取初探. 地质科技情报, 23(3): 25-29. doi: 10.3969/j.issn.1000-7849.2004.03.005
|
孙厚云, 卫晓锋, 甘凤伟, 等, 2019. 承德市滦河流域土壤重金属地球化学基线厘定及其累积特征. 环境科学, 40(08): 3753-3763. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201908043.htm
|
孙厚云, 卫晓锋, 孙晓明, 等, 2020. 御道口汉诺坝玄武岩偏硅酸矿泉水形成机制及其地质建造制约. 地球科学, 45(11): 4236-4253. doi: 10.3799/dqkx.2020.011
|
孙守文, 陶秀冬, 赵蕾, 等, 2014. 南疆地区小白杏叶片营养和土壤养分现状及相关性研究. 中国农学通报, 30(19): 118-122. doi: 10.11924/j.issn.1000-6850.2013-3124
|
唐坤, 王学求, 迟清华, 等, 2018. 兴蒙-华北地球化学走廊带稀土元素含量与空间分布. 地球科学, 43(3): 655-671. doi: 10.3799/dqkx.2018.901
|
汪振立, 邓通德, 王瑞敏, 等, 2009. 岩石-土壤-脐橙系统中稀土元素迁聚特征. 中国地质, 36(6): 1382-1394. doi: 10.3969/j.issn.1000-3657.2009.06.020
|
王伟军, 吕丽霞, 郝建宇, 等, 2019. 氮磷钾配比对供佛杏土壤养分及果实品质的影响. 北方园艺, 10: 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201910016.htm
|
王学求, 周建, 徐善法, 等, 2016. 全国地球化学基准网建立与土壤地球化学基准值特征. 中国地质, 43(5): 1469-1480. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605001.htm
|
巫锡勇, 凌斯祥, 任勇, 等, 2016. 渝东北黑色页岩元素迁移特征及化学风化程度. 地球科学, 41(2): 218-233. doi: 10.3799/dqkx.2016.017
|
吴蓓娟, 彭渤, 张坤, 等, 2016. 黑色页岩化学风化程度指标研究. 地质学报, 90(4): 818-832. doi: 10.3969/j.issn.0001-5717.2016.04.015
|
吴朝东, 储著银, 2001. 黑色页岩微量元素形态分析及地质意义. 矿物岩石地球化学通报, 20(1): 14-20. doi: 10.3969/j.issn.1007-2802.2001.01.004
|
吴月亮, 许淼, 董胜君, 等, 2019. 不同产区苦杏仁营养成分分析. 食品工业科技, 40(23): 300-305. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201923049.htm
|
严洪泽, 周国华, 孙彬彬, 等, 2018. 福建龙海杨梅产地元素地球化学特征. 中国地质, 45(6): 1155-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806007.htm
|
姚颖, 刘建明, 刘忠玲, 等, 2019. 不同坡位山杏天然林生长和土壤理化性质比较. 森林工程, 35(6): 36-41+54. doi: 10.3969/j.issn.1006-8023.2019.06.006
|
翟朝阳, 邱娟, 司洪章, 等, 2019. 微地形对大西沟新疆野杏萌发层土壤因子的影响. 生态学报, 39(6) : 2168-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201906031.htm
|
张贻次, 柏文富, 陈升高, 等, 1996. 杏生长结果与土壤关系的研究. 经济林研究, (增刊2): 297-301. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYJ1996S2073.htm
|
周东晓, 彭渤, 王勤, 等, 2020. 扬子地台西缘下寒武统黑色页岩土壤元素地球化学特征. 矿物岩石地球化学通报, 39(1): 59-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001013.htm
|
朱立新, 马生明, 王之峰, 2006. 中国东部平原土壤生态地球化学基准值. 中国地质, 33(6): 1400-1405. doi: 10.3969/j.issn.1000-3657.2006.06.025
|
朱永官, 段桂兰, 陈保冬, 等, 2014. 土壤-微生物-植物系统中矿物风化与元素循环. 中国科学: 地球科学, 44(6): 1107-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201406005.htm
|