Citation: | Guo Qinghai, Yang Chen, 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287 |
Arnórsson, S., Óskarsson, N., 2007. Molybdenum and Tungsten in Volcanic Rocks and in Surface and < 100℃ Ground Waters in Iceland. Geochimica et Cosmochimica Acta, 71(2): 284-304. https://doi.org/10.1016/j.gca.2006.09.030
|
Chen, X., Deng, X., Zhang, J., et al., 2018. Fluid Inclusions Constraints on the Origin of the Xiaobaishitou W-Mo Deposit in Hami, Xingjiang, NW China. Earth Science, 43 (9): 3086-3099 (in Chinese with English abstract). http://www.researchgate.net/publication/329031227_Fluid_Inclusions_Constraints_on_the_Origin_of_the_Xiaobaishitou_W-Mo_Deposit_in_Hami_Xinjiang_NW_China
|
Farnham, I. M., Johannesson, K. H., Singh, A. K., et al., 2003. Factor Analytical Approaches for Evaluating Groundwater Trace Element Chemistry Data. Analytica Chimica Acta, 490(1/2): 123-138. https://doi.org/10.1016/s0003-2670(03)00350-7
|
Firdaus, M.L., Norisuye, K., Nakagawa, Y., et al., 2008. Dissolved and Labile Particulate Zr, Hf, Nb, Ta, Mo and W in the Western North Pacific Ocean. Journal of Oceanography, 64(2): 247-257. https://doi.org/10.1007/s10872-008-0019-z
|
Giggenbach, W. F., 1992. Isotopic Shifts in Waters from Geothermal and Volcanic Systems along Convergent Plate Boundaries and their Origin. Earth and Planetary Science Letters, 113(4): 495-510. https://doi.org/10.1016/0012-821x(92)90127-h
|
Guo, Q. H., Li, Y. M., Luo, L., 2019a. Tungsten from Typical Magmatic Hydrothermal Systems in China and its Environmental Transport. Science of the Total Environment, 657(2-3): 1523-1534. https://doi.org/10.1016/j.scitotenv.2018.12.146
|
Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019b. Magmatic Fluid Input Explaining the Geochemical Anomaly of very High Arsenic in some Southern Tibetan Geothermal Waters. Chemical Geology, 513(3): 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008
|
Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014a. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed Via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76(10): 1-12. https://doi.org/10.1007/s00445-014-0868-9
|
Guo, Q. H., Nordstrom, D.K., McCleskey, R.B., 2014b. Towards Understanding the Puzzling Lack of Acid Geothermal Springs in Tibet (China): Insight from a Comparison with Yellowstone (USA) and Some Active Volcanic Hydrothermal Systems. Journal of Volcanology and Geothermal Research, 288(Nb2): 94-104. https://doi.org/10.1016/j.jvolgeores.2014.10.005
|
Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453(1): 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
|
Guo, Q. H., Wang, Y. X., Liu, W., 2010. O, H, and Sr Isotope Evidences of Mixing Processes in Two Geothermal Fluid Reservoirs at Yangbajing, Tibet, China. Environmental Earth Sciences, 59(7): 1589-1597. https://doi.org/10.1007/s12665-009-0145-y
|
Hall, G. E. M., Jefferson, C. W., Michel, F. A., 1988. Determination of W and Mo in Natural Spring Waters by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry) and ICP-MS (Inductively Coupled Plasma Mass Spectrometry): Application to South Nahanni River Area, N.W.T., Canada. Journal of Geochemical Exploration, 30(1/2/3): 63-84. https://doi.org/10.1016/0375-6742(88)90050-7
|
Johannesson, K.H., Lyons, W.B., Graham, E.Y., Welch, K.A., 2000. Oxyanion Concentrations in Eastern Sierra Nevada Rivers-3. Boron, Molybdenum, Vanadium, and Tungsten. Aquatic Geochemistry, 6(1): 19-46. doi: 10.1023/A:1009622219482
|
Kalinich, J. F., Emond, C. A., Dalton, T. K., et al., 2005. Embedded Weapons-Grade Tungsten Alloy Shrapnel Rapidly Induces Metastatic High-Grade Rhabdomyosarcomas in F344 Rats. Environmental Health Perspectives, 113(6): 729-734. https://doi.org/10.1289/ehp.7791
|
Kelly, A. D. R., Lemaire, M., Young, Y. K., et al., 2012. In Vivo Tungsten Exposure Alters B-Cell Development and Increases DNA Damage in Murine Bone Marrow. Toxicological Sciences, 131(2): 434-446. https://doi.org/10.1093/toxsci/kfs324
|
Kishida, K., Sohrin, Y., Okamura, K., et al., 2004. Tungsten Enriched in Submarine Hydrothermal Fluids. Earth and Planetary Science Letters, 222(3/4): 819-827. https://doi.org/10.1016/j.epsl.2004.03.034
|
Kletzin, A., Adams, M. W. W., 1996. Tungsten in Biological Systems. FEMS Microbiology Reviews, 18(1): 5-63. https://doi.org/10.1111/j.1574-6976.1996.tb00226.x
|
Konhauser, K. O., Powell, M. A., Fyfe, W. S., et al., 1997. Trace Element Chemistry of Major Rivers in Orissa State, India. Environmental Geology, 29(1/2): 132-141. https://doi.org/10.1007/s002540050111
|
Koutsospyros, A., Braida, W., Christodoulatos, C., et al., 2006. A Review of Tungsten: From Environmental Obscurity to Scrutiny. Journal of Hazardous Materials, 136(1): 1-19. https://doi.org/10.1016/j.jhazmat.2005.11.007
|
Krauskopf, K.B., 1974. Tungsten. In: Wedepohl, H.K., ed., Handbook of Geochemistry, Vol. 5. Springer, New York.
|
Marquet, P., Franç ois, B., Vignon, P., et al., 1996. A Soldier Who Had Seizures after Drinking Quarter of a Litre of Wine. The Lancet, 348(9034): 1070. https://doi.org/10.1016/s0140-6736(96)05459-1
|
Marquet, P., Franç ois, B., Lotfi, H., et al., 1997. Tungsten Determination in Biological Fluids, Hair and Nails by Plasma Emission Spectrometry in a Case of Severe Acute Intoxication in Man. Journal of Forensic Sciences, 42(3): 14162J. https://doi.org/10.1520/jfs14162j
|
McCleskey, R. B., Nordstrom, D. K., Susong, D. D., et al., 2010. Source and Fate of Inorganic Solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. Ⅱ. Trace Element Chemistry. Journal of Volcanology and Geothermal Research, 196(3/4): 139-155. https://doi.org/10.1016/j.jvolgeores.2010.05.004
|
Mohajerin, T. J., Helz, G. R., White, C. D., et al., 2014. Tungsten Speciation in Sulfidic Waters: Determination of Thiotungstate Formation Constants and Modeling their Distribution in Natural Waters. Geochimica et Cosmochimica Acta, 144(53): 157-172. https://doi.org/10.1016/j.gca.2014.08.037
|
Sheppard, P. R., Ridenour, G., Speakman, R. J., et al., 2006. Elevated Tungsten and Cobalt in Airborne Particulates in Fallon, Nevada: Possible Implications for the Childhood Leukemia Cluster. Applied Geochemistry, 21(1): 152-165. https://doi.org/10.1016/j.apgeochem.2005.09.012
|
Sheppard, P. R., Speakman, R. J., Ridenour, G., et al., 2007. Temporal Variability of Tungsten and Cobalt in Fallon, Nevada. Environmental Health Perspectives, 115(5): 715-719. https://doi.org/10.1289/ehp.9451
|
Smith, G.R., 1994. Materials Flow of Tungsten in the United States. US Department of the Interior, Bureau of Mines, Information Circular, C9388, New York.
|
Smith, R.M., Martell, A.E., 2004. NIST Standard Reference Database 46: NIST Critically Selected Stability Constants of Metal Complexes Database. US Department of Commerce Technology Administration, New York.
|
Sohrin, Y., Isshiki, K., Kuwamoto, T., et al., 1987. Tungsten in North Pacific Waters. Marine Chemistry, 22(1): 95-103. https://doi.org/10.1016/0304-4203(87)90051-x
|
Sohrin, Y., Matsui, M., Nakayama, E., 1999. Contrasting Behavior of Tungsten and Molybdenum in the Okinawa Trough, the East China Sea and the Yellow Sea. Geochimica et Cosmochimica Acta, 63(19/20): 3457-3466. https://doi.org/10.1016/s0016-7037(99)00273-2
|
Stefánsson, A., Arnórsson, S., 2005. The Geochemistry of As, Mo, Sb, and W in Natural Geothermal Waters, Iceland, Proceedings World Geothermal Congress, Antalaya, Turkey.
|
Steinberg, K. K., Relling, M. V., Gallagher, M. L., et al., 2007. Genetic Studies of a Cluster of Acute Lymphoblastic Leukemia Cases in Churchill County, Nevada. Environmental Health Perspectives, 115(1): 158-164. https://doi.org/10.1289/ehp.9025
|
Tan, H. B., Zhang, Y. F., Zhang, W. J., et al., 2014. Understanding the Circulation of Geothermal Waters in the Tibetan Plateau Using Oxygen and Hydrogen Stable Isotopes. Applied Geochemistry, 51: 23-32. https://doi.org/10.1016/j.apgeochem.2014.09.006
|
Tyrrell, J., Galloway, T. S., Abo-Zaid, G., et al., 2013. High Urinary Tungsten Concentration is Associated with Stroke in the National Health and Nutrition Examination Survey 1999-2010. PLoS ONE, 8(11): e77546. https://doi.org/10.1371/journal.pone.0077546
|
Van der Sloot, H. A., Hoede, D., Wijkstra, J., et al., 1985. Anionic Species of V, As, Se, Mo, Sb, Te and W in the Scheldt and Rhine Estuaries and the Southern Bight (North Sea). Estuarine, Coastal and Shelf Science, 21(5): 633-651. https://doi.org/10.1016/0272-7714(85)90063-0
|
Witten, M. L., Sheppard, P. R., Witten, B. L., 2012. Tungsten Toxicity. Chemico-Biological Interactions, 196(3): 87-88. https://doi.org/10.1016/j.cbi.2011.12.002
|
Xu, P., Zheng, Y., Yang, Z., et al., 2019. Sources of Ore-Forming Fluids and Materials of Jiagangxueshan W-Mo Deposit. Earth Science, 44(6): 1974-1986 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906016.htm
|
Yan, G.Q., Wang, X.X., Huang, Y., et al., 2020. Constraint of Pb Isotope on Ore-Forming Source Origin of Nuri Polymetallic Deposit, Tibet. Earth Science, 45(1): 31-42 (in Chinese with English abstract).
|
Zhang, Z., Zhu, M., Liu, S., et al., 1982. Preliminary Study of Hydrogeochemistry of Thermal Waters in Tibet. Acta Scientiarum Naturalium Universitatis Pekinensis, 1(3): 88-96 (in Chinese with English abstract).
|
Zheng, M., Wang, Q., Duo, J., et al., 1995. New Types of Hydrothermal Mineralization: Cesium Sinter Deposit in Tibet. Geology Press, Beijing (in Chinese).
|
陈叙安, 邓小华, 张静, 等, 2018. 新疆哈密小白石头钨钼矿床流体包裹体及矿床成因. 地球科学, 43(9): 3086-3099. doi: 10.3799/dqkx.2018.171
|
徐培言, 郑远川, 杨竹森, 等, 2019. 西藏甲岗雪山钨钼矿床成矿流体及成矿物质来源. 地球科学, 44(6): 1974-1986. doi: 10.3799/dqkx.2019.066
|
闫国强, 王欣欣, 黄勇, 等, 2020. Pb同位素对努日铜钼钨多金属矿床成矿物源的制约. 地球科学, 45(1): 31-42. doi: 10.3799/dqkx.2019.191
|
张知非, 朱梅湘, 刘时彬, 等, 1982. 西藏水热地球化学的初步研究. 北京大学学报(自然科学版), 18(3): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198203009.htm
|
郑绵平, 王秋霞, 多吉, 等, 1995. 水热成矿新类型——西藏铯硅华矿床. 北京: 地质出版社, 1-114.
|