• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 3
    Mar.  2021
    Turn off MathJax
    Article Contents
    Liu Xuesong, Chen Xuegang, Sun Kai, Li Chunfeng, 2021. Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene. Earth Science, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290
    Citation: Liu Xuesong, Chen Xuegang, Sun Kai, Li Chunfeng, 2021. Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene. Earth Science, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290

    Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene

    doi: 10.3799/dqkx.2020.290
    • Received Date: 2020-06-18
    • Publish Date: 2021-03-15
    • The sedimentary records of the east subbasin in the South China Sea reflect the weathering and evolution history of sediments since the Middle Miocene. We have analyzed the major, trace elements, and Sr-Nd isotopes of the sediments from the International Ocean Discovery Program (IODP) expedition 349 site U1431. The chemical weathering index of alteration (CIA) ranges from 49 to 74, indicating a low to moderate chemical weathering degree of the provenance. The chemical weathering trend shows the preferential leaching of plagioclase. The samples from units Ⅵ, Ⅶ and 55X-2 layer containing pyroclast are affected by the input of mafic materials, while the provenance of other samples is mainly felsic end-members. Sr and Nd isotopes show significant changes in the provenance of the sediments at U1431 site. By analyzing the Sr-Nd isotopic characteristics of sediments from U1431 site and surrounding potential provenance, we inferred the sediments at U1431 site were probably mainly from the Pear River and slightly from the Indochina Peninsula, Luzon and Palawan since 12.8 Ma. Several samples show positive εNd and low 86Sr/87Sr which may be related to the multiple volcanic activities in the study area during 12.5-7.4 Ma. After 6.5 Ma, the terrestrial material formed in the uplifting and erosion of Taiwan Island entered the central basin. Thus, Taiwan Island became one of the main sources.

       

    • loading
    • Cai, G. Q., Peng, X. C., Zhang, Y. L., 2011. The Significances of and Advances in the Study of Sediment Sources in the South China Sea. Advances in Marine Science, 29(1): 113-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBHH201101015.htm
      Cao, Y., Li, C. F., Yao, Y. J., 2017. Thermal Subsidence and Sedimentary Processes in the South China Sea Basin. Marine Geology, 394: 30-38. https://doi.org/10.1016/j.margeo.2017.07.022
      Chen, C. H., Lee, T., 1990. A Nd-Sr Isotopic Study on River Sediments of Taiwan. Proceedings of the Geological Society of China, 33(4): 339-350. http://ntur.lib.ntu.edu.tw/handle/246246/108328
      Chen, Z. X., Langmuir, C. H., 2018. Improving Data Precision and Accuracy With Short-Term and Long-Term Elemental Fractionation Corrections for Non-Matrix Matched Silicate Analysis by LA-ICP-MS. Goldschmidt 2018, Boston.
      Fang, Z., Zhao, J. X., McCulloch, M. T., 1992. Geochemical and Nd Isotopic Study of Palaeozoic Bimodal Volcanics in Hainan Island, South China: Implications for Rifting Tectonics and Mantle Reservoirs. Lithos, 29(1-2): 127-139. https://doi.org/10.1016/0024-4937(92)90037-Y
      Garçon, M., Chauvel, C., France-Lanord, C., et al., 2014. Which Minerals Control the Nd-Hf-Sr-Pb Isotopic Compositions of River Sediments?. Chemical Geology, 364: 42-55. https://doi.org/10.1016/j.chemgeo.2013.11.018
      Ge, Q., Liu, J. P., Xue, Z., et al., 2014. Dispersal of the Zhujiang River (Pearl River) Derived Sediment in the Holocene. Acta Oceanologica Sinica, 33(8): 1-9. https://doi.org/10.1007/s13131-014-0407-8
      Hu, D. K., Clift, P. D., Böning, P., et al., 2013. Holocene Evolution in Weathering and Erosion Patterns in the Pearl River Delta. Geochemistry, Geophysics, Geosystems, 14(7): 2349-2368. https://doi.org/10.1002/ggge.20166
      Huang, C. Y., Yuan, P. B., Tsao, S. J., 2006. Temporal and Spatial Records of Active Arc-Continent Collision in Taiwan: A Synthesis. Geological Society of America Bulletin, 118(3-4): 274-288. https://doi.org/10.1130/b25527.1
      Jonell, T. N., Clift, P. D., Hoang, L. V., et al., 2017. Controls on Erosion Patterns and Sediment Transport in a Monsoonal, Tectonically Quiescent Drainage, Song Gianh, Central Vietnam. Basin Research, 29: 659-683. https://doi.org/10.1111/bre.12199
      Knittel, U., Defant, M. J., Raczek, I., 1988. Recent Enrichment in the Source Region of Arc Magmas from Luzon Island, Philippines: Sr and Nd Isotopic Evidence. Geology, 16(1): 73-76. https://doi.org/10.1130/0091-7613(1988)0160073:reitsr>2.3.co;2 doi: 10.1130/0091-7613(1988)0160073:reitsr>2.3.co;2
      Lan, C. Y., Lee, C. S., Shen, J. J., et al., 2002. Nd-Sr Isotopic Composition and Geochemistry of Sediments from Taiwan and Their Implications. Western Pacific Earth Science, 2(2): 205-222 http://www.researchgate.net/publication/281263130_Nd-Sr_isotopic_composition_and_geochemistry_of_sediments_from_Taiwan_and_their_implications
      Li, C. F., Lin, J., Kulhanek, D. K., et al., 2015. Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics. International Ocean Discovery Program, College Station. https://doi.org/10.14379/iodp.proc.349.101.2015
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      Li, P. Y., Liu, Z. F., 2018. Characteristics and Significance of Trace Fossils in Late Miocene Deep-Sea Volcaniclastic Sediments in the Central Basin of South China Sea. Earth Science, 43(S2): 203-213 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2016.htm
      Liu, C., Clift, P. D., Murray, R. W., et al., 2017a. Geochemical Evidence for Initiation of the Modern Mekong Delta in the Southwestern South China Sea after 8 Ma. Chemical Geology, 451: 38-54. https://doi.org/10.1016/j.chemgeo.2017.01.008
      Liu, J. G., Xiang, R., Chen, M. H., et al., 2011. Influence of the Kuroshio Current Intrusion on Depositional Environment in the Northern South China Sea: Evidence from Surface Sediment Records. Marine Geology, 285(1-4): 59-68. https://doi.org/10.1016/j.margeo.2011.05.010
      Liu, J. G., Xiang, R., Chen, Z., et al., 2013. Sources, Transport and Deposition of Surface Sediments from the South China Sea. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 71: 92-102. https://doi.org/10.1016/j.dsr.2012.09.006
      Liu, Z. F., Colin, C., Huang, W., et al., 2007. Climatic and Tectonic Controls on Weathering in South China and Indochina Peninsula: Clay Mineralogical and Geochemical Investigations from the Pearl, Red, and Mekong Drainage Basins. Geochemistry, Geophysics, Geosystems, 8(5): Q05005. https://doi.org/10.1029/2006GC001490
      Liu, Z. F., Li, C. F., Kulhanek, D., 2017b. Preface: Evolution of the Deep South China Sea: Integrated IODP Expedition 349 Results. Marine Geology, 394: 1-3. https://doi.org/10.1016/j.margeo.2017.11.009
      López, J. M. G., Bauluz, B., Fernández-Nieto, C., et al., 2005. Factors Controlling the Trace-Element Distribution in Fine-Grained Rocks: The Albian Kaolinite-Rich Deposits of the Oliete Basin (NE Spain). Chemical Geology, 214(1-2): 1-19. https://doi.org/10.1016/j.chemgeo.2004.08.024
      McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 203-236. https://doi.org/10.1029/2000GC000109
      McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Geological Society of America, Special Paper, 285: 21-40. https://doi.org/10.1130/SPE284-p21
      Nesbitt, H. W., Markovics, G., Price, R. C., 1980. Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. https://doi.org/10.1016/0016-7037(80)90218-5
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
      Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290
      Shao, L., Cui, Y. C., Stattegger, K., et al., 2019. Drainage Control of Eocene to Miocene Sedimentary Records in the Southeastern Margin of Eurasian Plate. GSA Bulletin, 131(3-4): 461-478. https://doi.org/10.1130/b32053.1
      Shao, L., Qiao, P. J., Pang, X., et al., 2008. Nd Isotopic Variations and Its Implications in the Recent Sediments from the Northern South China Sea. Chinese Science Bulletin, 54(2): 311-317. https://doi.org/10.1007/s11434-008-0453-8
      Su, M., Xie, X. N., Wang, Z. F., et al., 2013. Sedimentary Evolution of the Central Canyon System in Qiongdongnan Basin, Northern South China Sea. Acta Petrolei Sinica, 34(3): 467-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201303008.htm
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford. https://doi.org/10.1016/0031-9201(86)90093-2
      Tong, S. Q., 2007. Elemental Geochemistry of Surface Sediments in Pearl River, Red River and Mekong River Basin (Dissertation). Tongji University, Shanghai (in Chinese with English abstract).
      Tu, K., Flower, M. F. J., Carlson, R. W., et al., 1992. Magmatism in the South China Sea: 1. Isotopic and Trace-Element Evidence for an Endogenous Dupal Mantle Component. Chemical Geology, 97(1-2): 47-63. https://doi.org/10.1016/0009-2541(92)90135-R
      Wang, J., Zhao, M. H., Qiu, X. L., et al., 2016. 3D Seismic Structure of the Zhenbei-Huangyan Seamounts Chain in the East Sub-Basin of the South China Sea and Its Mechanism of Formation. Geological Journal, 51: 448-463. https://doi.org/10.1002/gj.2781
      Wang, P. X., Jian, Z. M., 2019. Exploring the Deep South China Sea: Retrospects and Prospects. Science in China (Sreies D), 49(10): 1590-1606 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG201910001
      Wang, Y. J., Han, X. Q., Luo, Z. H., et al., 2009. Late Miocene Magmatism and Evolution of Zhenbei-Huangyan Seamount in the South China Sea: Evidence from Petrochemistry and Chronology. Acta Oceanologica Sinica, 31(4): 93-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC200904010.htm
      Wei, G. J., Liu, Y., Ma, J. L., et al., 2012. Nd, Sr Isotopes and Elemental Geochemistry of Surface Sediments from the South China Sea: Implications for Provenance Tracing. Marine Geology, 319-322: 21-34. https://doi.org/10.1016/j.margeo.2012.05.007
      White, W. M., Patchett, J., 1984. Hf-Nd-Sr Isotopes and Incompatible Element Abundances in Island Arcs: Implications for Magma Origins and Crust-Mantle Evolution. Earth and Planetary Science Letters, 67(2): 167-185. https://doi.org/10.1016/0012-821x(84)90112-2
      Yin, S. R., Li, J. B., Ding, W. W., et al., 2020. Sedimentary Filling Characteristics of the South China Sea Oceanic Basin, with Links to Tectonic Activity during and after Seafloor Spreading. International Geology Review, 62(7-8): 887-907. https://doi.org/10.1080/00206814.2018.1522603
      Zhang, D. J., Zhang, Y. Z., Shao, L., et al., 2017. Sedimentary Provenance in the Central Canyon of Qiongdongnan Basin in the Northern South China Sea. Natural Gas Geoscience, 28(10): 1574-1581 (in Chinese with English abstract). http://www.researchgate.net/publication/322294402_Sedimentary_provenance_in_the_Central_Canyon_of_Qiongdongnan_Basin_in_the_northern_South_China_Sea
      Zhang, G. L., Sun, W. D., Seward, G., 2018. Mantle Source and Magmatic Evolution of the Dying Spreading Ridge in the South China Sea. Geochemistry, Geophysics, Geosystems, 19(11): 4385-4399. https://doi.org/10.1029/2018GC007570
      Zhao, M., Shao, L., Liang, J. S., et al., 2015. No Red River Capture since the Late Oligocene: Geochemical Evidence from the Northwestern South China Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 122: 185-194. https://doi.org/10.1016/j.dsr2.2015.02.029
      Zhao, M. H., Du, F., Wang, Q., et al., 2018. Current Status and Challenges for Three-Dimensional Deep Seismic Survery in the South China Sea. Earth Science, 43(10): 3749-3761 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810034.htm
      蔡观强, 彭学超, 张玉兰, 2011. 南海沉积物物质来源研究的意义及其进展. 海洋科学进展, 29(1): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHH201101015.htm
      李平原, 刘志飞, 2018. 南海中央海盆晚中新世深海火山碎屑沉积的遗迹学特征及意义. 地球科学, 43(S2): 203-213. doi: 10.3799/dqkx.2018.130
      苏明, 解习农, 王振峰, 等, 2013. 南海北部琼东南盆地中央峡谷体系沉积演化. 石油学报, 34(3): 467-478. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303008.htm
      童胜琪, 2007. 珠江、红河及湄公河流域表层沉积物元素地球化学研究(硕士学位论文). 上海: 同济大学.
      汪品先, 翦知湣, 2019. 探索南海深部的回顾与展望. 中国科学(D辑), 49(10): 1590-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910006.htm
      王叶剑, 韩喜球, 罗照华, 等, 2009. 晚中新世南海珍贝-黄岩海山岩浆活动及其演化: 岩石地球化学和年代学证据. 海洋学报, 31(4): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200904010.htm
      张道军, 张迎朝, 邵磊, 等, 2017. 琼东南盆地中央峡谷沉积物源探讨. 天然气地球科学, 28(10): 1574-1581. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201710012.htm
      赵明辉, 杜峰, 王强, 等, 2018. 南海海底地震仪三维深地震探测的进展及挑战. 地球科学, 43(10): 3479-3761. doi: 10.3799/dqkx.2018.573
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(3)

      Article views (2948) PDF downloads(249) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return