• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 9
    Oct.  2021
    Turn off MathJax
    Article Contents
    Hu Zhengwang, Lü Banglai, Du Jinsong, Sun Shida, Chen Chao, 2021. Application of Susceptibility Imaging Method by Minimum-Structure Inversion to Underwater Target Detection. Earth Science, 46(9): 3376-3384. doi: 10.3799/dqkx.2020.339
    Citation: Hu Zhengwang, Lü Banglai, Du Jinsong, Sun Shida, Chen Chao, 2021. Application of Susceptibility Imaging Method by Minimum-Structure Inversion to Underwater Target Detection. Earth Science, 46(9): 3376-3384. doi: 10.3799/dqkx.2020.339

    Application of Susceptibility Imaging Method by Minimum-Structure Inversion to Underwater Target Detection

    doi: 10.3799/dqkx.2020.339
    • Received Date: 2020-11-04
      Available Online: 2021-10-14
    • Publish Date: 2021-10-14
    • Some defects still exist in the magnetic survey for the underwater targets especially in case of the objects with small sizes. In general, the interpretation is dominated by qualitative approach and the accuracy of the quantitative results is low, which is mainly caused by the remanent magnetization and the self-demagnetization in the underwater targets. These have great impact on the analysis and inversion of the magnetic anomaly data. To obtain a robust result, the minimum-structure inversion is applied to the magnetic magnitude transform data to image the location and shape of the underwater target. In the inversion, the L1 norm and L2 norm are utilized respectively to measure the complexity of the susceptibility structure. The corresponding results show that, to recover the cuboid model, the results by the L1 norm has much clearer boundaries and that by the L2 norm much smoother. Therefore, to detect the common underwater objects, the L1 norm is more appropriate to be adopted in the inversion. Moreover, the susceptibility imaging method is applied to the field data in the island-tunnel project for the Hong Kong-Zhuhai-Macao Bridge. The practical results verify that the horizontal location, width and depth of the underwater covered pipelines can be accurately determined by the minimum-structure inversion of the magnetic magnitude transform. In short, both the synthetic and the field examples indicate that the susceptibility imaging method in this paper, can calculate the locations and sizes of the underwater covered objects accurately and thus the method is valuable to be applied to the field data.

       

    • loading
    • Chen, J., Chen, Z.Y., Yang, C., 2015. Borehole Magnetic Gradient Method Based on Detection of Deep Underground Pipeline. Earth Science, 40(12): 2110-2118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201512014.htm
      Du, J. S., 2014. Study on Processing Forward Modeling and Inversion Algorithms of Satellite Magnetic Anomaly Data in Spherical Coordinate System (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Farquharson, C. G., 2008. Constructing Piecewise-Constant Models in Multidimensional Minimum-Structure Inversions. Geophysics, 73(1): K1-K9. https://doi.org/10.1190/1.2816650
      Gerovska, D., Araúzo-Bravo, M. J., Stavrev, P., 2004. Determination of the Parameters of Compact Ferro-Metallic Objects with Transforms of Magnitude Magnetic Anomalies. Journal of Applied Geophysics, 55(3-4): 173-186. https://doi.org/10.1016/j.jappgeo.2003.10.001
      Li, Y. G., Oldenburg, D. W., 1996. 3-D Inversion of Magnetic Data. Geophysics, 61(2): 394-408. https://doi.org/10.1190/1.1443968
      Li, Y. G., Oldenburg, D. W., 1998. 3-D Inversion of Gravity Data. Geophysics, 63(1): 109-119. https://doi.org/10.1190/1.1444302
      Li, Y. G., Shearer, S. E., Haney, M. M., et al., 2010. Comprehensive Approaches to 3D Inversion of Magnetic Data Affected by Remanent Magnetization. Geophysics, 75(1): L1-L11. https://doi.org/10.1190/1.3294766
      Liu, S. B., 2011. 3D Magnetic Susceptibility Imaging Based on the Amplitude of Magnetic Anomalies (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Liu, S. B., Chen, C., Hu, Z. W., 2011. The Application and Characteristic of Vertical First-Order Derivative of the Total Magnitude Magnetic Anomaly. Progress in Geophysics, 26(2): 647-653 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWJ201102032.htm
      Luo, Y., Yao, C. L., 2007. Theoretical Study on Cuboid Magnetic Field and Its Gradient Expression without Analytic Singular Point. Oil Geophysical Prospecting, 42(6): 714-719 (in Chinese with English abstract). http://www.researchgate.net/publication/297328285_Theoretical_study_on_cuboid_magnetic_field_and_its_gradient_expression_without_analytic_singular_point
      Ma, G. Q., Ming, Y. B., He, Y., et al., 2016. Horizontal Derivative Iteration Method for Downward Continuation of Gravity and Magnetic Data. Earth Science, 41(7): 1231-1237 (in Chinese with English abstract).
      Shearer, S., 2005. Three-Dimensional Inversion of Magnetic Total Gradient Data in the Presence of Remanent Magnetization (Dissertation). Colorado School of Mines, Golden.
      Sun, J. J., Li, Y. G., 2014. Adaptive Lp Inversion for Simultaneous Recovery of both Blocky and Smooth Features in a Geophysical Model. Geophysical Journal International, 197(2): 882-899. https://doi.org/10.1093/gji/ggu067
      Thébault, E., Finlay, C. C., Beggan, C. D., et al., 2015. Special Issue "International Geomagnetic Reference Field-The Twelfth Generation". Earth, Planets and Space, 67(1): 1-4. https://doi.org/10.1186/s40623-015-0313-0
      Tikhonov, A. N., Arsenin, V. Y., 1977. Solution of Ill-Posed Problems. John Wiley and Sons, New York.
      陈军, 陈泽元, 杨川, 2015. 基于深埋管线探测的井中磁梯度方法. 地球科学, 40(12): 2110-2118. doi: 10.3799/dqkx.2015.187
      杜劲松, 2014. 基于球坐标系的卫星磁异常数据处理与正反演方法研究(博士学位论文). 武汉: 中国地质大学.
      刘圣博, 2011. 基于磁异常模量的三维磁化率成像研究(硕士学位论文). 武汉: 中国地质大学(武汉).
      刘圣博, 陈超, 胡正旺, 2011. 磁异常模量垂向一阶导数的特征及应用. 地球物理学进展, 26(2): 647-653. doi: 10.3969/j.issn.1004-2903.2011.02.033
      骆遥, 姚长利, 2007. 长方体磁场及其梯度无解析奇点表达式理论研究. 石油地球物理勘探, 42(6): 714-719. doi: 10.3321/j.issn:1000-7210.2007.06.019
      马国庆, 明彦伯, 贺杨, 等, 2016. 重磁数据稳定向下延拓的水平导数迭代法. 地球科学, 41(7): 1231-1237. doi: 10.3799/dqkx.2016.101
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (1495) PDF downloads(79) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return