Citation: | Pan Mohan, Yang Ting, Lin Jian, Zhang Fan, Zhou Zhiyuan, Li Haiyong, Zhang Xubo, Fan Xingli, Cheng Zihua, 2021. The Formation Mechanism of Petit-Spot Volcanoes and the Nature of the Lithosphere-Asthenosphere Boundary (LAB). Earth Science, 46(3): 817-825. doi: 10.3799/dqkx.2020.340 |
Behn, M. D., Hirth, G., Elsenbeck II, J. R., 2009. Implications of Grain Size Evolution on the Seismic Structure of the Oceanic Upper Mantle. Earth and Planetary Science Letters, 282(1-4): 178-189. https://doi.org/10.1016/j.epsl.2009.03.014
|
Bercovici, D., Karato, S. I., 2003. Whole-Mantle Convection and the Transition-Zone Water Filter. Nature, 425(6953): 39-44. https://doi.org/10.1038/nature01918
|
Dasgupta, R., Hirschmann, M. M., 2006. Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide. Nature, 440(7084): 659-662. https://doi.org/10.1038/nature04612
|
Faul, U. H., Jackson, I., 2005. The Seismological Signature of Temperature and Grain Size Variations in the Upper Mantle. Earth and Planetary Science Letters, 234(1-2): 119-134. https://doi.org/10.1016/j.epsl.2005.02.008
|
Fischer, K. M., Ford, H. A., Abt, D. L., et al., 2010. The Lithosphere-Asthenosphere Boundary. Annual Review of Earth and Planetary Sciences, 38(1): 551-575. https://doi.org/10.1146/annurev-earth-040809-152438
|
Forsyth, D. W., Harmon, N., Scheirer, D. S., et al., 2006. Distribution of Recent Volcanism and the Morphology of Seamounts and Ridges in the GLIMPSE Study Area: Implications for the Lithospheric Cracking Hypothesis for the Origin of Intraplate, Non-Hot Spot Volcanic Chains. Journal of Geophysical Research: Solid Earth, 111(B11): B11407. https://doi.org/10.1029/2005JB004075
|
Fujiwara, T., Hirano, N., Abe, N., et al., 2007. Subsurface Structure of the "Petit-Spot" Volcanoes on the Northwestern Pacific Plate. Geophysical Research Letters, 34(13): L13305. https://doi.org/10.1029/2007GL030439
|
Gaherty, J. B., Jordan, T. H., Gee, L. S., 1996. Seismic Structure of the Upper Mantle in a Central Pacific Corridor. Journal of Geophysical Research: Solid Earth, 101(B10): 22291-22309. https://doi.org/10.1029/96JB01882
|
Gardés, E., Laumonier, M., Massuyeau, M., et al., 2020. UnravellingPartial Melt Distribution in the Oceanic Low Velocity Zone. Earth and Planetary Science Letters, 540: 116242. https://doi.org/10.1016/j.epsl.2020.116242
|
Green, D. H., Hibberson, W. O., Rosenthal, A., et al., 2014. Experimental Study of the Influence of Water on Melting and Phase Assemblages in the Upper Mantle. Journal of Petrology, 55(10): 2067-2096. https://doi.org/10.1093/petrology/egu050
|
Harmon, N., Forsyth, D. W., Scheirer, D. S., 2006. Analysis of Gravity and Topography in the GLIMPSE Study Region: Isostatic Compensation and Uplift of the Sojourn and HotuMatua Ridge Systems. Journal of Geophysical Research: Solid Earth, 111(B11): B11406. https://doi.org/10.1029/2005JB004071
|
Hirano, N., 2011. Petit-Spot Volcanism: A New Type of Volcanic Zone Discovered near a Trench. Geochemical Journal, 45(2): 157-167. https://doi.org/10.2343/geochemj.1.0111
|
Hirano, N., Kawamura, K., Hattori, M., et al., 2001. A New Type of Intra-Plate Volcanism; Young Alkali-Basalts Discovered from the Subducting Pacific Plate, Northern Japan Trench. Geophysical Research Letters, 28(14): 2719-2722. https://doi.org/10.1029/2000GL012426
|
Hirano, N., Koppers, A. A., Takahashi, A., et al., 2008. Seamounts, Knolls and Petit-Spot Monogenetic Volcanoes on the Subducting Pacific Plate. Basin Research, 20(4): 543-553. https://doi.org/10.1111/j.1365-2117.2008.00363.x
|
Hirano, N., Machida, S., Abe, N., et al., 2013. Petit-Spot Lava Fields off the Central Chile Trench Induced by Plate Flexure. Geochemical Journal, 47(2): 249-257. https://doi.org/10.2343/geochemj.2.0227
|
Hirano, N., Machida, S., Sumino, H., et al., 2019. Petit-Spot Volcanoes on the Oldest Portion of the Pacific Plate. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 154: 103142. https://doi.org/10.1016/j.dsr.2019.103142
|
Hirano, N., Takahashi, E., Yamamoto, J., et al., 2006. Volcanism in Response to Plate Flexure. Science, 313(5792): 1426-1428. https://doi.org/10.1126/science.1128235
|
Hirschmann, M. M., 2010. Partial Melt in the Oceanic Low Velocity Zone. Physics of the Earth and Planetary Interiors, 179(1-2): 60-71. https://doi.org/10.1016/j.pepi.2009.12.003
|
Hoernle, K., Hauff, F., Werner, R., et al., 2011. Origin of Indian Ocean Seamount Province by Shallow Recycling of Continental Lithosphere. Nature Geoscience, 4(12): 883-887. https://doi.org/10.1038/ngeo1331
|
Karato, S. I., 2011. Water Distribution across the Mantle Transition Zone and Its Implications for Global Material Circulation. Earth and Planetary Science Letters, 301(3-4): 413-423. https://doi.org/10.1016/j.epsl.2010.11.038
|
Karato, S. I., 2012. On the Origin of the Asthenosphere. Earth and Planetary Science Letters, 321-322: 95-103. https://doi.org/10.1016/j.epsl.2012.01.001
|
Karato, S. I., Park, J., 2018. On the Origin of the Upper Mantle Seismic Discontinuities. Lithospheric Discontinuities, 5-34.
|
Kawakatsu, H., Kumar, P., Takei, Y., et al., 2009. Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates. Science, 324(5926): 499-502. https://doi.org/10.1126/science.1169499
|
Kelbert, A., Schultz, A., Egbert, G., 2009. Global Electromagnetic Induction Constraints on Transition-Zone Water Content Variations. Nature, 460(7258): 1003-1006. https://doi.org/10.1038/nature08257
|
Kono, Y., Kenney-Benson, C., Hummer, D., et al., 2014. Ultralow Viscosity of Carbonate Melts at High Pressures. Nature Communications, 5(1): 5091. https://doi.org/10.1038/ncomms6091
|
Lin, P. Y. P., Gaherty, J. B., Jin, G., et al., 2016. High-Resolution Seismic Constraints on Flow Dynamics in the Oceanic Asthenosphere. Nature, 535(7613): 538-541. https://doi.org/10.1038/nature18012
|
Liu, J., Hirano, N., Machida, S., et al., 2020. Melting of Recycled Ancient Crust Responsible for the Gutenberg Discontinuity. Nature Communications, 11: 172. https://doi.org/10.1038/s41467-019-13958-w
|
Ma C., Tang Y., Ying J., 2019. Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4): 1128-1142 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904006.htm
|
Machida, S., Hirano, N., Kimura, J. I., 2009. Evidence for Recycled Plate Material in Pacific Upper Mantle Unrelated to Plumes. Geochimica et Cosmochimica Acta, 73(10): 3028-3037. https://doi.org/10.1016/j.gca.2009.01.026
|
Machida, S., Hirano, N., Sumino, H., et al., 2015. Petit-Spot Geology Reveals Melts in Upper-Most Asthenosphere Dragged by Lithosphere. Earth and Planetary Science Letters, 426: 267-279. https://doi.org/10.1016/j.epsl.2015.06.018
|
Machida, S., Kogiso, T., Hirano, N., 2017. Petit-Spot as Definitive Evidence for Partial Melting in the Asthenosphere Caused by CO2. Nature Communications, 8: 14302. https://doi.org/10.1038/ncomms14302
|
Mehouachi, F., Singh, S. C., 2018. Water-Rich Sublithospheric Melt Channel in the Equatorial Atlantic Ocean. Nature Geoscience, 11(1): 65-69. https://doi.org/10.1038/s41561-017-0034-z
|
Mo X. X., 2019. Magmatism and Deep Geological Process. Earth Science, 44(5): 1487-1493 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905007.htm
|
Naif, S., Key, K., Constable, S., et al., 2013. Melt-Rich Channel Observed at the Lithosphere-Asthenosphere Boundary. Nature, 495(7441): 356-359. https://doi.org/10.1038/nature11939
|
Ohira, A., Kodaira, S., Gou, F. J., et al., 2018. Seismic Structure of the Oceanic Crust around Petit-Spot Volcanoes in the Outer-Rise Region of the Japan Trench. Geophysical Research Letters, 45(20): 11123-111129. https://doi.org/10.1029/2018gl080305
|
Okumura, S., Hirano, N., 2013. Carbon Dioxide Emission to Earth's Surface by Deep-Sea Volcanism. Geology, 41(11): 1167-1170. https://doi.org/10.1130/g34620.1
|
Pearson, D. G., Brenker, F. E., Nestola, F., et al., 2014. Hydrous Mantle Transition Zone Indicated by Ringwoodite Included within Diamond. Nature, 507(7491): 221-224. https://doi.org/10.1038/nature13080
|
Qin, Y. F., Singh, S. C., Grevemeyer, I., et al., 2020. Discovery of Flat Seismic Reflections in the Mantle Beneath the Young Juan de Fuca Plate. Nature Communications, 11: 4122. https://doi.org/10.1038/s41467-020-17946-3
|
Reinhard, A. A., Jackson, M. G., Blusztajn, J., et al., 2019. "Petit Spot" Rejuvenated Volcanism Superimposed on Plume-Derived Samoan Shield Volcanoes: Evidence from a 645-m Drill Core from Tutuila Island, American Samoa. Geochemistry, Geophysics, Geosystems, 20(3): 1485-1507. https://doi.org/10.1029/2018gc007985
|
Ritter, X., Sanchez-Valle, C., Sator, N., et al., 2020. Density of Hydrous Carbonate Melts under Pressure, Compressibility of Volatiles and Implications for Carbonate Melt Mobility in the Upper Mantle. Earth and Planetary Science Letters, 533: 116043. https://doi.org/10.1016/j.epsl.2019.116043
|
Rohrbach, A., Schmidt, M. W., 2011. Redox Freezing and Melting in the Earth's Deep Mantle Resulting from Carbon-Iron Redox Coupling. Nature, 472(7342): 209-212. https://doi.org/10.1038/nature09899
|
Russell, J. B., Gaherty, J. B., Lin, P. Y. P., et al., 2019. High-Resolution Constraints on Pacific Upper Mantle Petrofabric Inferred from Surface-Wave Anisotropy. Journal of Geophysical Research: Solid Earth, 124(1): 631-657. https://doi.org/10.1029/2018jb016598
|
Rychert, C. A., Shearer, P. M., 2011. Imaging the Lithosphere-Asthenosphere Boundary Beneath the Pacific Using SS Waveform Modeling. Journal of Geophysical Research Atmospheres, 116(B7): B07307. https://doi.org/10.1029/2010jb008070
|
Sakamaki, T., Suzuki, A., Ohtani, E., et al., 2013. Ponded Melt at the Boundary between the Lithosphere and Asthenosphere. Nature Geoscience, 6(12): 1041-1044. https://doi.org/10.1038/ngeo1982
|
Sato, Y., Hirano, N., Machida, S., et al., 2018. Direct Ascent to the Surface of Asthenospheric Magma in a Region of Convex Lithospheric Flexure. International Geology Review, 60(10): 1231-1243. https://doi.org/10.1080/00206814.2017.1379912
|
Schmerr, N., 2012. The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary. Science, 335(6075): 1480-1483. https://doi.org/10.1126/science.1215433
|
Sifré, D., Gardés, E., Massuyeau, M., et al., 2014. Electrical Conductivity during Incipient Melting in the Oceanic Low-Velocity Zone. Nature, 509(7498): 81-85. https://doi.org/10.1038/nature13245
|
Stagno, V., Ojwang, D. O., McCammon, C. A., et al., 2013. The Oxidation State of the Mantle and the Extraction of Carbon from Earth's Interior. Nature, 493(7430): 84-88. https://doi.org/10.1038/nature11679
|
Stern, T. A., Henrys, S. A., Okaya, D., et al., 2015. A Seismic Reflection Image for the Base of a Tectonic Plate. Nature, 518(7537): 85-88. https://doi.org/10.1038/nature14146
|
Tan, Y., Helmberger, D. V., 2007. Trans-Pacific Upper Mantle Shear Velocity Structure. Journal of Geophysical Research: Solid Earth, 112(B8): B08301. https://doi.org/10.1029/2006JB004853
|
Taneja, R., O'Neill, C., Lackie, M., et al., 2015. 40Ar/39Ar Geochronology and the Paleoposition of Christmas Island (Australia), Northeast Indian Ocean. Gondwana Research, 28(1): 391-406. https://doi.org/10.1016/j.gr.2014.04.004
|
Valentine, G. A., Hirano, N., 2010. Mechanisms of Low-Flux Intraplate Volcanic Fields-Basin and Range (North America) and Northwest Pacific Ocean. Geology, 38(1): 55-58. https://doi.org/10.1130/g30427.1
|
Wessel, P., Sandwell, D., Kim, S. S., 2010. The Global Seamount Census. Oceanography, 23(1): 24-33. https://doi.org/10.5670/oceanog.2010.60
|
Wyllie, P. J., 1988. Magma Genesis, Plate Tectonics, and Chemical Differentiation of the Earth. Reviews of Geophysics, 26(3): 370-404. https://doi.org/10.1029/RG026i003p00370
|
Yamamoto, J., Korenaga, J., Hirano, N., et al., 2014. Melt-Rich Lithosphere-Asthenosphere Boundary Inferred from Petit-Spot Volcanoes. Geology, 42(11): 967-970. https://doi.org/10.1130/g35944.1
|
Yang, J., Faccenda, M., 2020. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone. Nature, 579(7797): 88-91. https://doi.org/10.1038/s41586-020-2045-y
|
Yesson, C., Clark, M. R., Taylor, M. L., et al., 2011. The Global Distribution of Seamounts Based on 30 Arc Seconds Bathymetry Data. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 58(4): 442-453. https://doi.org/10.1016/j.dsr.2011.02.004
|
Zhang, F., Lin, J., Zhou, Z. Y., et al., 2018. Intra- and Intertrench Variations in Flexural Bending of the Manila, Mariana and Global Trenches: Implications on Plate Weakening in Controlling Trench Dynamics. Geophysical Journal International, 212(2): 1429-1449. https://doi.org/10.1093/gji/ggx488
|
Zhou, Z. Y., Lin, J., 2018. Elasto-Plastic Deformation and Plate Weakening Due to Normal Faulting in the Subducting Plate along the Mariana Trench. Tectonophysics, 734/735: 59-68. https://doi.org/10.1016/j.tecto.2018.04.008
|
马超, 汤艳杰, 英基丰, 2019. 俯冲带岩浆作用与大陆地壳生长. 地球科学, 44(4): 1128-1142. doi: 10.3799/dqkx.2019.026
|
莫宣学, 2019. 岩浆作用与地球深部过程. 地球科学, 44(5): 1487-1493. doi: 10.3799/dqkx.2019.972
|