• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 9
    Oct.  2021
    Turn off MathJax
    Article Contents
    Liu Zhuo, Hao Fang, Liu Xin, Wu Wei, Quan Li, Tian Jinqiang, Feng Ziqi, 2021. Development Characteristics and Geological Significance of High Density Methane Inclusions in the Longmaxi Member I in the Ningxi Area, Southern Sichuan Basin. Earth Science, 46(9): 3157-3171. doi: 10.3799/dqkx.2020.344
    Citation: Liu Zhuo, Hao Fang, Liu Xin, Wu Wei, Quan Li, Tian Jinqiang, Feng Ziqi, 2021. Development Characteristics and Geological Significance of High Density Methane Inclusions in the Longmaxi Member I in the Ningxi Area, Southern Sichuan Basin. Earth Science, 46(9): 3157-3171. doi: 10.3799/dqkx.2020.344

    Development Characteristics and Geological Significance of High Density Methane Inclusions in the Longmaxi Member I in the Ningxi Area, Southern Sichuan Basin

    doi: 10.3799/dqkx.2020.344
    • Received Date: 2020-10-06
      Available Online: 2021-10-14
    • Publish Date: 2021-10-14
    • As a key exploration area for Silurian shale gas in southern Sichuan basin, Ningxi area experienced multiple fracture activities. Calcite veins are generally developed in the Longmaxi Member I. At the same time, graphitization occurs due to the extremely high degree of thermal evolution, resulting in shale gas enrichment pattern which remains unknown. This paper presents an estimation of paleotemperatures and paleopressures of the key exploration well in the region-the Well Ningxi 202 of Longmaxi Member I, through integrated analyses on systematic core description, thin section microscopic observation, cathodoluminescence observation, laser Raman spectroscopy, and microscopic temperature measurement. Results show that: High-angle calcite veins (type A) are distributed in the main body of the Longmaxi Member I, and bedding veins (type B) are locally developed. Methane inclusions are mainly developed in Type A veins, and some samples show special bitumen inclusions. The RmcRo of bitumen in bitumen inclusions are 3.52%-4.16%, indicating that they are in the overmature to graphitization. The methane Raman scattering peak is between 2 910.711 2-2 912.495 1 cm-1, with the homogenization temperature between -99.8 to -96.3℃. The density obtained by Raman parameter displacement and microscopic temperature measurement ranged from 0.253 6-0.344 5 g/cm3 and 0.291 6-0.303 2 g/cm3, showing typical high-density characteristics. In conclusion, the high density methane inclusions may be trapped in the early stage of Yanshan tectonic movement and in overpressure state, indicating that the shale system has good sealing property and is conducive to shale gas enrichment.

       

    • loading
    • Beeskow, B., Rankin, A. H., Murphy, P. J., et al., 2005. Mixed CH4-CO2 Fluid Inclusions in Quartz from the South Wales Coalfield as Suitable Natural Calibration Standards for Microthermometry and Raman Spectroscopy. Chemical Geology, 223(1-3): 3-15. https://doi.org/10.1016/j.chemgeo.2005.01.028
      Chen, Y., Zhou, Y. Q., Zhang, L. P., et al., 2007. Discovery of CH4-Rich High-Pressure Fluid Inclusions Hosted in Analcime from Dongying Depression, China. Journal of Petroleum Science and Engineering, 56(4): 311-314. https://doi.org/10.1016/j.petrol.2006.10.005
      Duan, Z. H., Møller, N., Weare, J. H, 1992a. An Equation of State for the CH4-CO2-H2O System: I. Pure Systems from 0 to 1 000℃ and 0 to 8 000 Bar. Geochimica et Cosmochimica Acta, 56(7): 2605-2617. https://doi.org/10.1016/0016-7037(92)90347-L
      Duan, Z. H., Møller, N., Weare, J. H., 1992b. An Equation of State for the CH4-CO2-H2O System: II. Mixtures from 50 to 1 000℃ and 0 to 1 000 Bar. Geochimica et Cosmochimica Acta, 56(7): 2619-2631. https://doi.org/10.1016/0016-7037(92)90348-M
      Fabre, D., Couty, F., 1986. Etude, Par Spectroscopie Raman, Du Methane Comprime Jusqu'a 3 kbar. Application a La Mesure de Pression Dans Les Inclusions Fluides Contenues Dans Les Mineraux. Comptes Rendus, 303(Ⅱ), 1305-1308. http://www.researchgate.net/publication/280016864_Etude_par_spectroscopie_Raman_du_methane_comprime_jusqu'a_3_kbar_Application_a_la_mesure_de_pression_dans_les_inclusions_fluides_contenues_dans_les_mineraux
      Feng, Z. Q., Liu, D., Huang, S. P., et al., 2016. Carbon Isotopic Composition of Shale Gas in the Silurian Longmaxi Formation of the Changning Area, Sichuan Basin. Petroleum Exploration and Development, 43(5): 705-713 (in Chinese with English abstract).
      Gao, J., He, S., Yi, J. Z., 2015. Discovery of High Density Methane Inclusions in Jiaoshiba Shale Gas Field and Its Significance. Oil & Gas Geology, 36(3): 472-480 (in Chinese with English abstract). http://www.researchgate.net/publication/282381014_Discovery_of_high_density_methane_inclusions_in_Jiaoshiba_shale_gas_field_and_its_significance
      Gao, J., Zhang, J. K., He, S., et al., 2019. Overpressure Generation and Evolution in Lower Paleozoic Gas Shales of the Jiaoshiba Region, China: Implications for Shale Gas Accumulation. Marine and Petroleum Geology, 102: 844-859. https://doi.org/10.1016/j.marpetgeo.2019.01.032
      Guo, T. L., 2016. Discovery and Characteristics of the Fuling Shale Gas Field and Its Enlightenment and Thinking. Earth Science Frontiers, 23(1): 29-43 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201601003
      Guo, X. S., Hu, D. F., Huang, R. C., et al., 2020. Feature of Paleo-Oil Pools in the Sinian Dengying Formation, Northeastern Sichuan Basin, and Its Significance to Exploration. Oil & Gas Geology, 41(4): 673-683 (in Chinese with English abstract).
      Guo, X. W., Liu, K. Y., Jia, C. Z., et al., 2016. Constraining Tectonic Compression Processes by Reservoir Pressure Evolution: Overpressure Generation and Evolution in the Kelasu Thrust Belt of Kuqa Foreland Basin, NW China. Marine and Petroleum Geology, 72: 30-44. https://doi.org/10.1016/j.marpetgeo.2016.01.015
      Hansen, S. B., Berg, R. W., 2009. Raman Spectroscopic Studies of Methane Gas Hydrates. Applied Spectroscopy Reviews, 44(2): 168-179. https://doi.org/10.1080/05704920802352614
      Hao, F., Zou, H. Y., 2013. Cause of Shale Gas Geochemical Anomalies and Mechanisms for Gas Enrichment and Depletion in High-Maturity Shales. Marine and Petroleum Geology, 44: 1-12. https://doi.org/10.1016/j.marpetgeo.2013.03.005
      Huang, S. J., Qing, H. R., Hu, Z. W., et al., 2008. Cathodoluminescence and Diagenesis of the Carbonate Rocks in Feixianguan Formation of Triassic, Eastern Sichuan Basin of China. Earth Science, 33(1): 26-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200801007.htm
      Hurai, V., Marko, F., Tokarski, A. K., et al., 2006. Fluid Inclusion Evidence for Deep Burial of the Tertiary Accretionary Wedge of the Carpathians. Terra Nova, 18(6): 440-446. https://doi.org/10.1111/j.1365-3121.2006.00710.x
      Li, W., He, S., Zhang, B. Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4): 402-415 (in Chinese with English abstract).
      Lin, F., Bodnar, R. J., Becker, S. P., 2007. Experimental Determination of the Raman CH4 Symmetric Stretching (Ν1) Band Position from 1-650 Bar and 0.3-22℃: Application to Fluid Inclusion Studies. Geochimica et Cosmochimica Acta, 71(15): 3746-3756. https://doi.org/10.1016/j.gca.2007.05.016
      Liu, B., 2005. The Thermodynamic Simulation of Hydrocarbon Inclusions. Science Press, Beijing, 25-26 (in Chinese).
      Liu, B., Shen. K., 1999. The Thermodynamic Simulation of Fluid Inclusions. Geological Publishing House, Beijing (in Chinese).
      Liu, D. H., Dai, J. X., Xiao, X. M., et al., 2010. High Density Methane Inclusions in Puguang Gasfield: Discovery and a T-P Genetic Study. Chinese Science Bulletin, 55(Z1): 359-366 (in Chinese with English abstract).
      Liu, D. H., Xiao, X. M., Tian, H., et al., 2009. Identification of Natural Gas Origin Using the Characteristics of Bitumen and Fluid Inclusions. Petroleum Exploration and Development, 36(3): 375-382 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=30476401
      Liu, D. H., Xiao, X. M., Tian, H., et al., 2013. Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics: Methodology and Geological Applications. Chinese Science Bulletin, 58(13): 1228-1241 (in Chinese with English abstract). doi: 10.1360/csb2013-58-13-1228
      Liu, H. L., Wang, H. Y., Fang, C. H., et al., 2016. The Formation Mechanism of Over-Pressure Reservoir and Target Screening Index of the Marine Shale in the South China. Earth Science Frontiers, 23(2): 48-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201602008.htm
      Liu, L., He, S., Zhai, G. Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911001.htm
      Lu, W. J., Chou, I. M., Burruss, R. C., et al., 2007. A Unified Equation for Calculating Methane Vapor Pressures in the CH4-H2O System with Measured Raman Shifts. Geochimica et Cosmochimica Acta, 71(16): 3969-3978. https://doi.org/10.1016/j.gca.2007.06.004
      Ma, X. H., 2017. A Golden Era for Natural Gas Development in the Sichuan Basin. Natural Gas Industry, 37(2): 1-10 (in Chinese with English abstract). http://www.onacademic.com/detail/journal_1000040094775510_b86d.html
      Ma, X. H., Xie, J., Yong, R., et al., 2020. Geological Characteristics and High Production Control Factors of Shale Gas Reservoirs in Silurian Longmaxi Formation, Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 47(5): 841-855 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380420601057
      Ma, Y. S., Cai, X. Y., Zhao, P. R., et al., 2010. Distribution and Further Exploration of the Large-Medium Sized Gas Fields in Sichuan Basin. Acta Petrolei Sinica, 31(3): 347-354 (in Chinese with English abstract). doi: 10.1038/aps.2009.204
      Seitz, J. C., Pasteris, J. D., Chou, I. M., 1996. Raman Spectroscopic Characterization of Gas Mixtures; II, Quantitative Composition and Pressure Determination of the CO2-CH4 System. American Journal of Science, 296(6): 577-600. https://doi.org/10.2475/ajs.296.6.577
      Thieu, V., Subramanian, S., Colgate, S. O., et al., 2000. High-Pressure Optical Cell for Hydrate Measurements Using Raman Spectroscopy. Annals of the New York Academy of Sciences, 912(1): 983-992. https://doi.org/10.1111/j.1749-6632.2000.tb06853.x
      Wang, Y. M., Li, X. J., Chen, B., et al., 2018. Lower Limit of Thermal Maturity for the Carbonization of Organic Matter in Marine Shale and Its Exploration Risk. Petroleum Exploration and Development, 45(3): 385-395 (in Chinese with English abstract).
      Wang, Y. M., Li, X. J., Wang, H., et al., 2019. Development Characteristics of Concretions in the Longmaxi Formation of Lower Silurian in the Sichuan Basin and the Indicating Significance of Their Depositional Environment. Natural Gas Industry, 39(10): 10-21 (in Chinese with English abstract).
      Wang, Y. M., Li, X. J., Wang, H., et al., 2020. Prediction of Organic Matter Carbonization Zones for Lower Silurian Longmaxi Formation in Middle-Upper Yangtze Region. Natural Gas Geoscience, 31(2): 151-162 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2468256X20300286
      Wu, B., Qiu, N. S., 2013. Relationship between Evolution of Temperature-Pressure and Natural Gas Accumulation in the Southern Sichuan, China. Journal of China Coal Society, 38(5): 840-844 (in Chinese with English abstract).
      Xie, X. N., Hao, F., Lu, Y. C., et al., 2017. Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China. Earth Science, 42(7): 1045-1056 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707001.htm
      Yang, H. Z., Zhao, S. X., Liu, Y., et al., 2019. Main Controlling Factors of Enrichment and High-Yield of Deep Shale Gas in the Luzhou Block, Southern Sichuan Basin. Natural Gas Industry, 39(11): 55-63 (in Chinese with English abstract).
      Yang, P., Wang, Z. J., Yu, Q., et al., 2019. An Resources Potential Analysis of Wufeng-Longmaxi Formation Shale Gas in the Southwestern Margin of Sichuan Basin. Geology in China, 46(3): 601-614 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201903012.htm
      Yang, Y., Wang, B., Cao, Z. C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low-Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257 (in Chinese with English abstract).
      Zhang, J. L., Qiao, S. H., Lu, W. J., et al., 2016. An Equation for Determining Methane Densities in Fluid Inclusions with Raman Shifts. Journal of Geochemical Exploration, 171: 20-28. https://doi.org/10.1016/j.gexplo.2015.12.003
      Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2): 166-178 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201602003.htm
      冯子齐, 刘丹, 黄士鹏, 等, 2016. 四川盆地长宁地区志留系页岩气碳同位素组成. 石油勘探与开发, 43(5): 705-713. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605006.htm
      高键, 何生, 易积正, 2015. 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义. 石油与天然气地质, 36(3): 472-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503018.htm
      郭彤楼, 2016. 涪陵页岩气田发现的启示与思考. 地学前缘, 23(1): 29-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601005.htm
      郭旭升, 胡东风, 黄仁春, 等, 2020. 川东北地区胡家坝震旦系灯影组古油藏特征及其油气勘探意义. 石油与天然气地质, 41(4): 673-683. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004003.htm
      黄思静, 卿海若, 胡作维, 等, 2008. 川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用. 地球科学, 33(1): 26-34. http://www.earth-science.net/article/id/1729
      李文, 何生, 张柏桥, 等, 2018. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征. 石油学报, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm
      刘斌, 2005. 烃类流体包裹体热力学. 北京: 科学出版社, 25-26.
      刘斌, 沈昆. 1999. 流体包裹体热力学. 北京: 地质出版社.
      刘德汉, 戴金星, 肖贤明, 等, 2010. 普光气田中高密度甲烷包裹体的发现及形成的温度和压力条件. 科学通报, 55(Z1): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2010Z1010.htm
      刘德汉, 肖贤明, 田辉, 等, 2009. 应用流体包裹体和沥青特征判别天然气的成因. 石油勘探与开发, 36(3): 375-382. doi: 10.3321/j.issn:1000-0747.2009.03.013
      刘德汉, 肖贤明, 田辉, 等, 2013. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用. 科学通报, 58(13): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm
      刘洪林, 王红岩, 方朝合, 等, 2016. 中国南方海相页岩气超压机制及选区指标研究. 地学前缘, 23(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602008.htm
      刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
      马新华, 2017. 四川盆地天然气发展进入黄金时代. 天然气工业, 37(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201702003.htm
      马新华, 谢军, 雍锐, 等, 2020. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素. 石油勘探与开发, 47(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm
      马永生, 蔡勋育, 赵培荣, 等, 2010. 四川盆地大中型天然气田分布特征与勘探方向. 石油学报, 31(3): 347-354. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003000.htm
      王玉满, 李新景, 陈波, 等, 2018. 海相页岩有机质炭化的热成熟度下限及勘探风险. 石油勘探与开发, 45(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm
      王玉满, 李新景, 王皓, 等, 2019. 四川盆地下志留统龙马溪组结核体发育特征及其沉积环境意义. 天然气工业, 39(10): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910002.htm
      王玉满, 李新景, 王皓, 等, 2020. 中上扬子地区下志留统龙马溪组有机质碳化区预测. 天然气地球科学, 31(2): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202002001.htm
      吴斌, 邱楠生, 2013. 川南地区温压演化与天然气成藏的关系. 煤炭学报, 38(5): 840-844. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305023.htm
      解习农, 郝芳, 陆永潮, 等, 2017. 南方复杂地区页岩气差异富集机理及其关键技术. 地球科学, 42(7): 1045-1056. doi: 10.3799/dqkx.2017.084
      杨洪志, 赵圣贤, 刘勇, 等, 2019. 泸州区块深层页岩气富集高产主控因素. 天然气工业, 39(11): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911013.htm
      杨平, 汪正江, 余谦, 等, 2019. 四川盆地西南缘五峰-龙马溪组页岩气资源潜力分析. 中国地质, 46(3): 601-614. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903012.htm
      杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200
      邹才能, 董大忠, 王玉满, 等, 2016. 中国页岩气特征、挑战及前景(二). 石油勘探与开发, 43(2): 166-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(3)

      Article views (1428) PDF downloads(81) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return