• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 9
    Oct.  2021
    Turn off MathJax
    Article Contents
    Ma Guoqing, Wu Qi, Xiong Shengqing, Li Lili, 2021. Ratio Method for Calculating the Source Location of Gravity and Magnetic Anomalies Based on Deep Learning. Earth Science, 46(9): 3365-3375. doi: 10.3799/dqkx.2020.350
    Citation: Ma Guoqing, Wu Qi, Xiong Shengqing, Li Lili, 2021. Ratio Method for Calculating the Source Location of Gravity and Magnetic Anomalies Based on Deep Learning. Earth Science, 46(9): 3365-3375. doi: 10.3799/dqkx.2020.350

    Ratio Method for Calculating the Source Location of Gravity and Magnetic Anomalies Based on Deep Learning

    doi: 10.3799/dqkx.2020.350
    • Received Date: 2020-08-13
      Available Online: 2021-10-14
    • Publish Date: 2021-10-14
    • The location of field source's center is one important purpose in the inversion of gravity and magnetic data, and the location of geological body is estimated mainly through the linear equation between the anomaly and the location of the field source. In order to obtain the location accurately and quickly, a deep learning technique based on the ratio of gravity and magnetic gradient is proposed to achieve the acquisition of the field source location in this paper, which can calculate the field source location quickly by using the deep learning technique to learn the relationship between the horizontal distribution of the gravity and magnetic gradient ratio, the buried depth, and the index. It is also proposed to use the mutual relationship of multiple values to calculate the information of the geological body more accurately and stably. This method can calculate the center location of complex geological bodies, and avoid the complicated process of screening the results of the previous methods, using the deep learning method of analytic signal for magnetic anomaly with remanent magnetism to achieve the location inversion. The application effect of the method is tested by theoretical models, which shows that the proposed method can obtain the depth information of the geological body accurately. Comparing the calculation results of the deep learning of more points, it is found that the use of multiple extreme points of different proportions can reduce the interference by noise and can get a location more accurately, so the method has good practicability.

       

    • loading
    • Beiki, M., 2013. TSVD Analysis of Euler Deconvolution to Improve Estimating Magnetic Source Parameters: An Example from the Åsele Area, Sweden. Journal of Applied Geophysics, 90: 82-91. https://doi.org/10.1016/j.jappgeo.2013.01.002
      Cao, S. J., Zhu, Z. Q., Lu, G. Y., 2012. Gravity Tensor Euler Deconvolution Solutions Based on Adaptive Fuzzy Cluster Analysis. Journal of Central South University (Science and Technology), 43(3): 1033-1039 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZNGD201203039&dbcode=CJFD&year=2012&dflag=pdfdown
      Florio, G., Fedi, M., 2014. Multiridge Euler Deconvolution. Geophysical Prospecting, 62(2): 333-351. https://doi.org/10.1111/1365-2478.12078
      Gerovska, D., Araúzo-Bravo, M. J., 2003. Automatic Interpretation of Magnetic Data Based on Euler Deconvolution with Unprescribed Structural Index. Computers & Geosciences, 29(8): 949-960. https://doi.org/10.1016/S0098-3004(03)00101-8
      Han, W. X., Zhou, Y. T., Chi, Y., 2018. Deep Learning Convolutional Neural Networks for Random Noise Attenuation in Seismic Data. Geophysical Prospecting for Petroleum, 57(6): 862-869, 877 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYWT201806008.htm
      Hou, Z. L., Wang, E. D., Zhou, W. N., et al., 2019. Euler Deconvolution of Gravity Gradiometry Data and the Application in Vinton Dome. Oil Geophysical Prospecting, 54(2): 472-479, 242 (in Chinese with English abstract). http://www.researchgate.net/publication/332846748_Euler_deconvolution_of_gravity_gradiometry_data_and_the_application_in_Vinton_Dome
      Lu, B. L., Fan, M. N., Zhang, Y. Q., 2009. The Calculation and Optimization of Structure Index in Euler Deconvolution. Progress in Geophysics, 24(3): 1027-1031 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQWJ200903030.htm
      Ma, G. Q., 2013. The Study on the Automatic Interpretation Methods of Potential Field (Gravity & Magnetic) and Its Gradients (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Mushayandebvu, M. F., van Driel, P., Reid, A. B., et al., 2001. Magnetic Source Parameters of Two-Dimensional Structures Using Extended Euler Deconvolution. Geophysics, 66(3): 814-823. https://doi.org/10.1190/1.1444971
      Nabighian, M. N., 1972. The Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal cross-Section: Its Properties and Use for Automated Anomaly Interpretation. Geophysics, 37(3): 507-517. https://doi.org/10.1190/1.1440276
      Peters, L. J., 1949. The Direct Approach to Magnetic Interpretation and Its Practical Application. Geophysics, 14(3): 290-320. https://doi.org/10.1190/1.1437537
      Reid, A. B., Allsop, J. M., Granser, H., et al., 1990. Magnetic Interpretation in Three Dimensions Using Euler Deconvolution. Geophysics, 55(1): 80-91. https://doi.org/10.1190/1.1442774
      Reid, A. B., Thurston, J. B., 2014. The Structural Index in Gravity and Magnetic Interpretation: Errors, Uses, and Abuses. Geophysics, 79(4): J61-J66. https://doi.org/10.1190/geo2013-0235.1
      Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986. Learning Representations by Back-Propagating Errors. Nature, 323(6088): 533-536. https://doi.org/10.1038/323533a0
      Salem, A., Ravat, D., Mushayandebvu, M. F., et al., 2004. Linearized Least-Squares Method for Interpretation of Potential-Field Data from Sources of Simple Geometry. Geophysics, 69(3): 783-788. https://doi.org/10.1190/1.1759464
      Stavrev, P., Reid, A., 2010. Euler Deconvolution of Gravity Anomalies from Thick Contact/Fault Structures with Extended Negative Structural Index. Geophysics, 75(6): I51-I58. https://doi.org/10.1190/1.3506559
      Sun, Y. S., 1980. Computing the Vertical Second Grder Derivative of Gravitational and Magnetic Anomalies. Oil Geophysical Prospecting, 15(6): 45-62 (in Chinese with English abstract).
      Thompson, D. T., 1982. EULDPH: A New Technique for Making Computer-Assisted Depth Estimates from Magnetic Data. Geophysics, 47(1): 31-37. https://doi.org/10.1190/1.1441278
      Wang, H. R., 2020. The Study on the Gravity and Magnetic Inversion Based on Parallel Computing and Deep Learning Algorithm (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Yang, F. S., Ma, J. W., 2019. Deep-Learning Inversion: a Next-Generation Seismic Velocity Model Building Method. Geophysics, 84(4): 583-599. https://doi.org/10.1190/geo2018-0249.1
      Yao, C. L., Guan, Z. N., Wu, Q. B., et al., 2004. An Analysis of Euler Deconvolution and Its Improvement. Geophysical and Geochemical Exploration, 28(2): 150-155 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=WTYH200402017&dbcode=CJFD&year=2004&dflag=pdfdown
      Zhang, C. Y., Mushayandebvu, M. F., Reid, A. B., et al., 2000. Euler Deconvolution of Gravity Tensor Gradient Data. Geophysics, 65(2): 512-520. https://doi.org/10.1190/1.1444745
      Zhang, G. Y., Wang, Z. Z., Lin, C. Y., et al., 2020. Seismic Reservoir Prediction Method Based on Wavelet Transform and Convolutional Neural Network and Its Application. Journal of China University of Petroleum (Edition of Natural Science), 44(4): 83-93 (in Chinese with English abstract).
      Zheng, H., Zhang, B, 2020. Intelligent Seismic Data Interpolation via Convolutional Neural Network. Progress in Geophysics, 35(2): 721-727 (in Chinese with English abstract).
      Zhou, W. Y., Ma, G. Q., Hou, Z. L., et al., 2017. The Study on the Joint Euler Deconvolution Method of Full Tensor Gravity Data. Chinese Journal of Geophysics, 60(12): 4855-4865 (in Chinese with English abstract). http://www.researchgate.net/publication/326395072_The_study_on_the_joint_Euler_deconvolution_method_of_full_tensor_gravity_data
      曹书锦, 朱自强, 鲁光银, 2012. 基于自适应模糊聚类分析的重力张量欧拉反褶积解. 中南大学学报(自然科学版), 43(3): 1033-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201203039.htm
      韩卫雪, 周亚同, 池越, 2018. 基于深度学习卷积神经网络的地震数据随机噪声去除. 石油物探, 57(6): 862-869, 877. doi: 10.3969/j.issn.1000-1441.2018.06.008
      侯振隆, 王恩德, 周文纳, 等, 2019. 重力梯度欧拉反褶积及其在文顿盐丘的应用. 石油地球物理勘探, 54(2): 472-479, 242. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201902027.htm
      鲁宝亮, 范美宁, 张原庆, 2009. 欧拉反褶积中构造指数的计算与优化选取. 地球物理学进展, 24(3): 1027-1031. doi: 10.3969/j.issn.1004-2903.2009.03.029
      马国庆, 2013. 位场(重&磁)及其梯度异常自动解释方法研究(博士学位论文). 长春: 吉林大学.
      孙运生, 1980. 重磁异常垂向二阶导数的计算. 石油地球物理勘探, 15(6): 45-62.
      王浩然, 2020. 基于并行计算与深度学习算法的大规模重磁数据反演研究(硕士学位论文). 长春: 吉林大学.
      姚长利, 管志宁, 吴其斌, 等, 2004. 欧拉反演方法分析及实用技术改进. 物探与化探, 28(2): 150-155. doi: 10.3969/j.issn.1000-8918.2004.02.017
      张国印, 王志章, 林承焰, 等, 2020. 基于小波变换和卷积神经网络的地震储层预测方法及应用. 中国石油大学学报(自然科学版), 44(4): 83-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202004011.htm
      郑浩, 张兵, 2020. 基于卷积神经网络的智能化地震数据插值技术. 地球物理学进展, 35(2): 721-727. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202002041.htm
      周文月, 马国庆, 侯振隆, 等, 2017. 重力全张量数据联合欧拉反褶积法研究及应用. 地球物理学报, 60(12): 4855-4865. doi: 10.6038/cjg20171225
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(2)

      Article views (1534) PDF downloads(94) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return