Citation: | Wang Bin, Yang Yi, Cao Zicheng, He Sheng, Zhao Yongqiang, Guo Xiaowen, Liu Yongli, Chen Jiaxu, Zhao Jian-xin, 2021. U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield. Earth Science, 46(9): 3203-3216. doi: 10.3799/dqkx.2020.352 |
Barker, S. L. L., Bennett, V. C., Cox, S. F., et al., 2009. Sm-Nd, Sr, C and O Isotope Systematics in Hydrothermal Calcite-Fluorite Veins: Implications for Fluid-Rock Reaction and Geochronology. Chemical Geology, 268(1-2): 58-66. https://doi.org/10.1016/j.chemgeo.2009.07.009
|
Becker, S. P., Eichhubl, P., Laubach, S. E., et al., 2010. A 48 M.Y. History of Fracture Opening, Temperature, and Fluid Pressure: Cretaceous Travis Peak Formation, East Texas Basin. Geological Society of America Bulletin, 122(7-8): 1081-1093. https://doi.org/10.1130/b30067.1
|
Cai, C. F., Li, K. K., Li, B., et al., 2009. Geochemical Characteristics and Origins of Fracture- and Vug-Fillings of the Ordovidan in Tahe Oilfield, Tarim Basin. Acta Petrologica Sinica, 25(10): 2399-2404 (in Chinese with English abstract). http://www.researchgate.net/publication/282327935_Geochemical_characteristics_and_origins_of_fracture-and_vug-fillings_of_the_Ordovician_in_Tahe_oilfieldTarim_basin
|
Caja, M. A., Permanyer, A., Marfil, R., et al., 2006. Fluid Flow Record from Fracture-Fill Calcite in the Eocene Limestones from the South-Pyrenean Basin (NE Spain) and Its Relationship to Oil Shows. Journal of Geochemical Exploration, 89(1-3): 27-32. https://doi.org/10.1016/j.gexplo.2005.11.009
|
Cao, J., Hu, W. X., Yao, S. P., et al., 2007. Carbon, Oxygen and Strontium Isotope Composition of Calcite Veins in the Carboniferous to Permian Source Sequences of the Junggar Basin: Implications on Petroleum Fluid Migration. Acta Sedimentologica Sinica, 25(5): 722-729 (in Chinese with English abstract). http://www.researchgate.net/publication/288972147_Carbon_oxygen_and_strontium_isotope_composition_of_calcite_veins_in_the_carboniferous_to_Permian_source_sequences_of_the_Junggar_Basin_implications_on_petroleum_fluid_migration
|
Chen, H. H., Lu, Z. Y., Cao, Z. C., et al., 2016. Hydrothermal Alteration of Ordovician Reservoir in Northeastern Slope of Tazhong Uplift, Tarim Basin. Acta Petrolei Sinica, 37(1): 43-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201601005.htm
|
Chen, H. H., Wu, Y., Feng, Y., et al., 2014. Timing and Chronology of Hydrocarbon Charging in the Ordovician of Tahe Oilfield, Tarim Basin, NW China. Oil & Gas Geology, 35(6): 806-819 (in Chinese with English abstract). http://www.cqvip.com/QK/95357X/201406/663850490.html
|
Dockrill, B., Shipton, Z. K., 2010. Structural Controls on Leakage from a Natural CO2 Geologic Storage Site: Central Utah, USA. Journal of Structural Geology, 32(11): 1768-1782. https://doi.org/10.1016/j.jsg.2010.01.007
|
Eichhubl, P., Boles, J. R., 2000. Focused Fluid Flow along Faults in the Monterey Formation, Coastal California. Geological Society of America Bulletin, 112(11): 1667-1679. https://doi.org/10.1130/0016-7606(2000)1121667:fffafi>2.0.co;2 doi: 10.1130/0016-7606(2000)1121667:fffafi>2.0.co;2
|
Fall, A., Eichhubl, P., Cumella, S. P., et al., 2012. Testing the Basin-Centered Gas Accumulation Model Using Fluid Inclusion Observations: Southern Piceance Basin, Colorado. AAPG Bulletin, 96(12): 2297-2318. https://doi.org/10.1306/05171211149
|
Gu, Y., Huang, J. W., Jia, C. S., et al., 2020. Research Progress on Marine Oil and Gas Accumulation in Tarim Basin. Petroleum Geology and Experiment, 42(1): 1-12 (in Chinese with English abstract).
|
Guo, X. W., Chen, J. X., Yuan, S. Q., et al., 2020. Constraint of In-Situ Calcite U-Pb Dating by Laser Ablation on Geochronology of Hydrocarbon Accumulation in Petroliferous Basins: A Case Study of Dongying Sag in the Bohai Bay Basin. Acta Petrolei Sinica, 41(3): 284-291 (in Chinese with English abstract).
|
He, D. F., Li, D. S., Tong, X. G., et al., 2008. Accumulation and Distribution of Oil and Gas Controlled by Paleo-Uplift in Poly-History Superimposed Basin. Acta Petrolei Sinica, 29(4): 475-488 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SYXB200804002&dbcode=CJFD&year=2008&dflag=pdfdown
|
He, Z. L., Yun, L., You, D. H., et al., 2019. Genesis and Distribution Prediction of the Ultra-Deep Carbonate Reservoirs in the Transitional Zone between the Awati and Manjiaer Depressions, Tarim Basin. Earth Science Frontiers, 26(1): 13-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201901003.htm
|
Hu, W. X., Chen, Q., Wang, X. L., et al., 2010. REE Models for the Discrimination of Fluids in the Formation and Evolution of Dolomite Reservoirs. Oil & Gas Geology, 31(6): 810-818 (in Chinese with English abstract). http://www.researchgate.net/publication/308353614_REE_models_for_the_discrimination_of_fluids_in_the_formation_and_evolution_of_dolomite_reservoirs
|
Hu, W. X., Jin, Z. J., Zhang, Y. J., et al., 2006. Mineralogy and Geochemical Records of Episodic Reservoiring of Hydrocarbon: Example from the Reservoirs in the Northwest Margin of Junggar Basin. Oil & Gas Geology, 27(4): 442-450 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200604002.htm
|
Huang, S. J., Shi, H., Zhang, M., et al., 2004. Application of Strontium Isotope Stratigraphy to Dating Ordovician Marine Sediments-An Case Study from the Well Tazhong 12 in Tarim Basin. Acta Sedimentologica Sinica, 22(1): 1-5 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200401000.htm
|
Jin, Z. J., Cao, J., Hu, W. X., et al., 2008. Episodic Petroleum Fluid Migration in Fault Zones of the Northwestern Junggar Basin (Northwest China): Evidence from Hydrocarbon-Bearing Zoned Calcite Cement. AAPG Bulletin, 92(9): 1225-1243. https://doi.org/10.1306/06050807124
|
Lander, R. H., Larese, R. E., Bonnell, L. M., 2008. Toward more Accurate Quartz Cement Models: The Importance of Euhedral Versus Noneuhedral Growth Rates. AAPG Bulletin, 92(11): 1537-1563. https://doi.org/10.1306/07160808037
|
Lawrence, M. G., Greig, A., Collerson, K. D., et al., 2006. Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquatic Geochemistry, 12(1): 39-72. https://doi.org/10.1007/s10498-005-4471-8
|
Li, Z., Huang, S. J., Liu, J. Q., et al., 2010. Buried Diagenesis, Structurally Controlled Thermal-Fluid Process and Their Effect on Ordovician Carbonate Reservoirs in Tahe, Tarim Basin. Acta Sedimentologica Sinica, 28(5): 969-979 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=CJXB201005016&dbcode=CJFD&year=2010&dflag=pdfdown
|
Liu, E. T., Zhao, J. X., Pan, S. Q., et al., 2019. A New Technology of Basin Fluid Geochronology: In-Situ U-Pb Dating of Calcite. Earth Science, 44(3): 698-712 (in Chinese with English abstract). http://www.researchgate.net/publication/333043516_A_New_Technology_of_Basin_Fluid_Geochronology_In-Situ_U-Pb_Dating_of_Calcite
|
Liu, L., He, S., Zhai, G. Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911001.htm
|
Lü, H. T., Ding, Y., Geng, F., 2014. Hydrocarbon Accumulation Patterns and Favorable Exploration Areas of the Ordovician in Tarim Basin. Oil & Gas Geology, 35(6): 798-805 (in Chinese with English abstract).
|
McArthur, J. M., Howarth, R. J., Bailey, T. R., 2001. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0-509 Ma and Accompanying Look-up Table for Deriving Numerical Age. The Journal of Geology, 109(2): 155-170. https://doi.org/10.1086/319243
|
Nuriel, P., Weinberger, R., Rosenbaum, G., et al., 2012. Timing and Mechanism of Late-Pleistocene Calcite Vein Formation across the Dead Sea Fault Zone, Northern Israel. Journal of Structural Geology, 36: 43-54. https://doi.org/10.1016/j.jsg.2011.12.010
|
Olson, J. E., Laubach, S. E., Lander, R. H., 2009. Natural Fracture Characterization in Tight Gas Sandstones: Integrating Mechanics and Diagenesis. AAPG Bulletin, 93(11): 1535-1549. https://doi.org/10.1306/08110909100
|
Parnell, J., 2010. Potential of Palaeofluid Analysis for Understanding Oil Charge History. Geofluids, 10(1-2), 73-82. https://doi.org/10.1111/j.1468-8123.2009.00268.x
|
Peng, J. T., Zhang, D. L., Hu, R. Z., et al., 2010. Inhomogeneous Distribution of Rare Earth Elements (REEs) in Scheelite from the Zhazixi W-Sb Deposit, Western Hunan and Its Geological Implications. Geological Review, 56(6): 810-819 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzlp201006006
|
Qi, L. X., Yun, L., 2010. Development Characteristics and Main Controlling Factors of the Ordovician Carbonate Karst in Tahe Oilfield. Oil & Gas Geology, 31(1): 1-12 (in Chinese with English abstract).
|
Rossi, C., Marfil, R., Ramseyer, K., et al., 2001. Facies-Related Diagenesis and Multiphase Siderite Cementation and Dissolution in the Reservoir Sandstones of the Khatatba Formation, Egypt's Western Desert. Journal of Sedimentary Research, 71(3): 459-472. https://doi.org/10.1306/2dc40955-0e47-11d7-8643000102c1865d
|
Shen, A. J., Hu, A. P., Cheng, T., et al., 2019. Laser Ablation in Situ U-Pb Dating and Its Application to Diagenesis-Porosity Evolution of Carbonate Reservoirs. Petroleum Exploration and Development, 46(6): 1062-1074 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-exploration-development-english_thesis/0201278853602.html
|
Suchy, V., Heijlen, W., Sykorova, I., et al., 2000. Geochemical Study of Calcite Veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): Evidence for Widespread Post-Variscan Fluid Flow in the Central Part of the Bohemian Massif. Sedimentary Geology, 131(3-4): 201-219. https://doi.org/10.1016/S0037-0738(99)00136-0
|
Wang, B., Zhao, Y. Q., He, S., et al., 2020. Hydrocarbon Accumulation Stages and Their Controlling Factors in the Northern Ordovician Shunbei 5 Fault Zone, Tarim Basin. Oil & Gas Geology, 41(5): 965-974 (in Chinese with English abstract).
|
Wang, D., Wang, G. Z., Liu, S. G., et al., 2012. Geochemical Tracing of the Cambrian-Ordovician Reservoir Fluid in Well Yingdong-2, Eastern Tarim Basin. Oil & Gas Geology, 33(6): 867-876 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201206007.htm
|
Worden, R. H., Benshatwan, M. S., Potts, G. J., et al., 2016. Basin-Scale Fluid Movement Patterns Revealed by Veins: Wessex Basin, UK. Geofluids, 16(1): 149-174. https://doi.org/10.1111/gfl.12141
|
Yang, X. Y., He, S., He, Z. L., et al., 2013. Characteristics and Pale-Fluid Activity Implications of Fluid-Inclusion and Isotope of Calcite Veins in Jingshan Area. Journal of China University of Petroleum (Edition of Natural Science), 37(1): 19-26 (in Chinese with English abstract). http://www.researchgate.net/publication/288171368_Characteristics_and_pale-fluid_activity_implications_of_fluid-inclusion_and_isotope_of_calcite_veins_in_Jingshan_area
|
Yun, L., Jiang, H. S., 2007. Hydrocarbon Accumulation Conditions and Enrichment Rules in Tahe Oilfield. Oil & Gas Geology, 28(6): 768-775 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200706011.htm
|
Yun, L., Zhai, X. X., 2008. Discussion on Characteristics of the Cambrian Reservoirs and Hydrocarbon Accumulation in Well Tashen-1, Tarim Basin. Oil & Gas Geology, 29(6): 726-732 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SYYT200806006&dbcode=CJFD&year=2008&dflag=pdfdown
|
Zhai, X. X., 2006. Exploration Practices in Frontiers of Tahe Oilfield. Oil & Gas Geology, 27(6): 751-761 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYYT200606006.htm
|
蔡春芳, 李开开, 李斌, 等, 2009. 塔河地区奥陶系碳酸盐岩缝洞充填物的地球化学特征及其形成流体分析. 岩石学报, 25(10): 2399-2404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910009.htm
|
曹剑, 胡文瑄, 姚素平, 等, 2007. 准噶尔盆地石炭-二叠系方解石脉的碳、氧、锶同位素组成与含油气流体运移. 沉积学报, 25(5): 722-729. doi: 10.3969/j.issn.1000-0550.2007.05.010
|
陈红汉, 鲁子野, 曹自成, 等, 2016. 塔里木盆地塔中地区北坡奥陶系热液蚀变作用. 石油学报, 37(1): 43-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601005.htm
|
陈红汉, 吴悠, 丰勇, 等, 2014. 塔河油田奥陶系油气成藏期次及年代学. 石油与天然气地质, 35(6): 806-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406010.htm
|
顾忆, 黄继文, 贾存善, 等, 2020. 塔里木盆地海相油气成藏研究进展. 石油实验地质, 42(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202001003.htm
|
郭小文, 陈家旭, 袁圣强, 等, 2020. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束——以渤海湾盆地东营凹陷为例. 石油学报, 41(3): 284-291. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm
|
何登发, 李德生, 童晓光, 等, 2008. 多期叠加盆地古隆起控油规律. 石油学报, 29(4): 475-488. doi: 10.3321/j.issn:0253-2697.2008.04.001
|
何治亮, 云露, 尤东华, 等, 2019. 塔里木盆地阿-满过渡带超深层碳酸盐岩储层成因与分布预测. 地学前缘, 26(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901003.htm
|
胡文瑄, 陈琪, 王小林, 等, 2010. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 31(6): 810-818. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006017.htm
|
胡文瑄, 金之钧, 张义杰, 等, 2006. 油气幕式成藏的矿物学和地球化学记录——以准噶尔盆地西北缘油藏为例. 石油与天然气地质, 27(4): 442-450. doi: 10.3321/j.issn:0253-9985.2006.04.002
|
黄思静, 石和, 张萌, 等, 2004. 锶同位素地层学在奥陶系海相地层定年中的应用——以塔里木盆地塔中12井为例. 沉积学报, 22(1): 1-5. doi: 10.3969/j.issn.1000-0550.2004.01.001
|
李忠, 黄思静, 刘嘉庆, 等, 2010. 塔里木盆地塔河奥陶系碳酸盐岩储层埋藏成岩和构造-热流体作用及其有效性. 沉积学报, 28(5): 969-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201005016.htm
|
刘恩涛, Zhao, J. X., 潘松圻, 等, 2019. 盆地流体年代学研究新技术: 方解石激光原位U-Pb定年法. 地球科学, 44(3): 698-712. doi: 10.3799/dqkx.2019.958
|
刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
|
吕海涛, 丁勇, 耿锋, 2014. 塔里木盆地奥陶系油气成藏规律与勘探方向. 石油与天然气地质, 35(6): 798-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406009.htm
|
彭建堂, 张东亮, 胡瑞忠, 等, 2010. 湘西渣滓溪钨锑矿床白钨矿中稀土元素的不均匀分布及其地质意义. 地质论评, 56(6): 810-819. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006007.htm
|
漆立新, 云露, 2010. 塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素. 石油与天然气地质, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htm
|
沈安江, 胡安平, 程婷, 等, 2019. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩-孔隙演化中的应用. 石油勘探与开发, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htm
|
王斌, 赵永强, 何生, 等, 2020. 塔里木盆地顺北5号断裂带北段奥陶系油气成藏期次及其控制因素. 石油与天然气地质, 41(5): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005008.htm
|
王东, 王国芝, 刘树根, 等, 2012. 塔东地区英东2井寒武系-奥陶系储层流体地球化学示踪. 石油与天然气地质, 33(6): 867-876. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201206007.htm
|
杨兴业, 何生, 何治亮, 等, 2013. 京山地区方解石脉包裹体、同位素特征及古流体指示意义. 中国石油大学学报(自然科学版), 37(1): 19-26. doi: 10.3969/j.issn.1673-5005.2013.01.004
|
云露, 蒋华山, 2007. 塔河油田成藏条件与富集规律. 石油与天然气地质, 28(6): 768-775. doi: 10.3321/j.issn:0253-9985.2007.06.010
|
云露, 翟晓先, 2008. 塔里木盆地塔深1井寒武系储层与成藏特征探讨. 石油与天然气地质, 29(6): 726-732. doi: 10.3321/j.issn:0253-9985.2008.06.004
|
翟晓先, 2006. 塔河大油田新领域的勘探实践. 石油与天然气地质, 27(6): 751-761. doi: 10.3321/j.issn:0253-9985.2006.06.005
|