• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 9
    Oct.  2021
    Turn off MathJax
    Article Contents
    Zhao Jian, Zhao Junfeng, Ren Kangxu, Wang Tongkui, Xu Bifeng, 2021. Distribution and Main Controlling Factors of CO2 in Santos Basin, Brazil. Earth Science, 46(9): 3217-3229. doi: 10.3799/dqkx.2020.359
    Citation: Zhao Jian, Zhao Junfeng, Ren Kangxu, Wang Tongkui, Xu Bifeng, 2021. Distribution and Main Controlling Factors of CO2 in Santos Basin, Brazil. Earth Science, 46(9): 3217-3229. doi: 10.3799/dqkx.2020.359

    Distribution and Main Controlling Factors of CO2 in Santos Basin, Brazil

    doi: 10.3799/dqkx.2020.359
    • Received Date: 2020-07-26
      Available Online: 2021-10-14
    • Publish Date: 2021-10-14
    • An extraordinarily high amount of CO2found in pre-salt section in Santos basin poses great challenges to the oil and gas exploration and development. In this study, combining regional gravity and magnetic database, deep-seismic lines, well drilling, formation test and samples dataset of the basin, the origin of CO2 was clarified firstly, and its regional distribution patterns were statistically analyzed and their main controlling factors were explored as well. The widely distributed CO2 in pre-salt reservoirs in Santos basin is mainly sourced from mantle, and mantle-derived CO2 contributes at least 92% of the total volume of CO2. Regionally, CO2 abundance gradually increases from continent to ocean, and is relatively concentrated in the eastern uplift of the basin. On its margin usually occurs the current maximum CO2 content values. The extra-high CO2 abundance in Santos basin is the result of the combined action of various geological factors such as crust & mantle transition, regional tectonic evolution, magma events and fault activity. Among them, continental crust thinning and mantle uplifting are the most important background factors, controlling the regional distribution of CO2. The intensive extension of crust caused a strong stretching and thinning of the lower continental crust of Sao Paulo platform, forming a crustal thinning area, around 5.1×104 km2, which caused the CO2-rich mantle material to intrude upward into the continental crust. This uplifted mantle has directly controlled the regional distribution of CO2 in Santos basin. Outside this area, the risk of CO2 is significantly reduced. Magma injection or active faults are both important pathways for CO2 migration and accumulation, with most common cases involving active faults leading CO2 from "uplifted" mantle to shallower reservoirs. The NW-SE strike-slip faults and the NE-SW class I-II normal faults have an obvious control effect on distribution of CO2 in shallower formation: NW-SE strike-slip fault could extend into deep mantle, while the NE-SW normal faults distribute these CO2 in shallower layers. So that their intersection points or periphery areas are the most favorable areas for accumulation of magma and CO2.

       

    • loading
    • Aslanian, D., Moulin, M., Olivet, J. L., et al., 2009. Brazilian and African Passive Margins of the Central Segment of the South Atlantic Ocean: Kinematic Constraints. Tectonophysics, 468(1-4): 98-112. https://doi.org/10.1016/j.tecto.2008.12.016
      Ballentine, C. J., Burnard, P. G., 2002. Production, Release and Transport of Noble Gases in the Continental Crust. Reviews in Mineralogy and Geochemistry, 47(1): 481-538. https://doi.org/10.2138/rmg.2002.47.12
      Clayton, C. J., 1995. Controls on the Carbon Isotope Ratios of CO2 in Oil and Gas Fields. 17th International Meeting on Organic Geochemistry, Donostia-San Sebastian.
      Cobbold, P. R., Meisling, K. E., Mount, V. S., 2001. Reactivation of an Obliquely Rifted Margin, Campos and Santos Basins, Southeastern Brazil. AAPG Bulletin, 85(11), 1925-1944. https://doi.org/10.1306/8626D0B3-173B-11D7-8645000102C1865D
      Dai, J. X., Song, Y., Dai, C. S., et al., 1996. Geochemistry and Accumulation of Carbon Dioxide Gases in China. AAPG Bulletin, 80(10): 1615-1626. https://doi.org/10.1306/64eda0d2-1724-11d7-8645000102c1865d
      Dehler, N. M., Magnavita, L. P., Gomes, L. C., et al., 2016. The 'Helmut' Geophysical Anomaly: A Regional Left-Lateral Transtensional Shear Zone System Connecting Santos and Campos Basins, Southeastern Brazil. Marine and Petroleum Geology, 72: 412-422. https://doi.org/10.1016/j.marpetgeo.2016.01.012
      Dickson, W. G., Fryklund, R. E., Odegard, M. E., et al., 2003. Constraints for Plate Reconstruction Using Gravity Data-Implications for Source and Reservoir Distribution in Brazilian and West African Margin Basins. Marine and Petroleum Geology, 20(3-4): 309-322. https://doi.org/10.1016/S0264-8172(03)00039-4
      Dickson, W., Schiefelbein, C., Zumberge, J., et al., 2005. Basin Analysis in Brazilian and West African Conjugates: Combining Disciplines to Deconstruct Petroleum Systems. Petroleum Systems of Divergent Continental Margin Basins: 25th Annual, Houston. https://doi.org/10.5724/gcs.05.25.0790
      Dinh, N. V., 1997. Distribution and Origin of Carbon Dioxide in the Song Hong Basin of Offshore Vietnan. Proceedings of the International Conference on Petroleum Systems of SE Asia and Australasia, Jakarta.
      Evain, M., Afilhado, A., Rigoti, C., et al., 2015. Deep Structure of the Santos Basin-São Paulo Plateau System, SE Brazil. Journal of Geophysical Research: Solid Earth, 120(8): 5401-5431. https://doi.org/10.1002/2014jb011561
      Gamboa, L., Ferraz, A., Baptista, R., et al., 2019. Geotectonic Controls on CO2 Formation and Distribution Processes in the Brazilian Pre-Salt Basins. Geosciences, 9(6): 252. https://doi.org/10.3390/geosciences9060252
      Gilfillan, S. M. V., Ballentine, C. J., Holland, G., et al., 2008. The Noble Gas Geochemistry of Natural CO2 Gas Reservoirs from the Colorado Plateau and Rocky Mountain Provinces, USA. Geochimica et Cosmochimica Acta, 72(4): 1174-1198. https://doi.org/10.1016/j.gca.2007.10.009
      Graham, D. W., 2002. Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs. Reviews in Mineralogy and Geochemistry, 47(1): 247-317. https://doi.org/10.2138/rmg.2002.47.8
      Imbus, S. W., Katz, B. J., Urwongse, T., 1998. Predicting CO2 Occurrence on a Regional Scale: Southeast Asia Example. Organic Geochemistry, 29(1-3): 325-345. https://doi.org/10.1016/S0146-6380(98)00156-9
      Jia, H. C., Kang, H. Q., Li, M. G., et al., 2020. Accumulation Conditions of CO2 and Its Influence to Pre-Salt Oilfields, Santos Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 42(4): 66-72 (in Chinese with English abstract).
      Kumar, N., Danforth, A., Nuttall, P., et al., 2012. From Oceanic Crust to Exhumed Mantle: A 40 Year (1970-2010) Perspective on the Nature of Crust under the Santos Basin, SE Brazil. Geological Society, London, Special Publications, 369(1): 147-165. https://doi.org/10.1144/SP369.16
      Kumar, N., Gamboa, L. A. P., 1979. Evolution of the São Paulo Plateau (Southeastern Brazilian Margin) and Implications for the Early History of the South Atlantic. Geological Society of America Bulletin, 90(3): 281-293. https://doi.org/10.1130/0016-7606(1979)90281:eotspp>2.0.co;2 doi: 10.1130/0016-7606(1979)90281:eotspp>2.0.co;2
      Li, M. J., Wang, T. G., Liu, J., et al., 2008. Occurrence and Origin of Carbon Dioxide in the Fushan Depression, Beibuwan Basin, South China Sea. Marine and Petroleum Geology, 25(6): 500-513. https://doi.org/10.1016/j.marpetgeo.2007.07.007
      Lin, S. H., 2005. Fault and Magmatic Activity as Control of Mantle Source CO2 Gas Accumulation: A Case Study of Jiyang Depression. Earth Science, 30(4): 473-479 (in Chinese with English abstract). http://www.researchgate.net/publication/286954775_Fault_and_magmatic_activity_as_control_of_mantle_source_CO2_gas_accumulation_A_case_study_of_Jiyang_depression?ev=auth_pub
      Liu, Z. L., Lu, Z. W., Jia, J. L., et al., 2019. Using Deep Seismic Reflection to Profile Deep Structure of Ore Concentrated Area: Current Status and Case Histories. Earth Science, 44(6): 2084-2105 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906024.htm
      Ma, A. L., Li, Y. Z., Zhang, X. K., et al., 2015. Carbon Dioxide Origin, Alkane Gas Geochemical Characteristics and Pool-Forming Model of Pre-Salt J Oilfield in Offshore Santos Basin, Brazil. China Offshore Oil and Gas, 27(5): 13-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201505002.htm
      Meisling, K. E., Cobbold, P. R., Mount, V. S., 2001. Segmentation of an Obliquely Rifted Margin, Campos and Santos Basins, Southeastern Brazil. AAPG Bulletin, 85(11): 1903-1924. https://doi.org/10.1306/8626d0a9-173b-11d7-8645000102c1865d
      Modica, C. J., Brush, E. R., 2004. Post-Rift Sequence Stratigraphy, Paleogeography, and Fill History of the Deep-Water Santos Basin, Offshore Southeast Brazil. AAPG Bulletin, 88(7): 923-945. https://doi.org/10.1306/01220403043
      Moreira, J. L. P., Madeira, C. V., Gil, J. A., et al., 2007. Bacia de Santos. Boletim de Geociencias da Petrobras, 15: 531-549.
      Norvick, M. S., Schaller, H., 1998. A Three-Phase Early Cretaceous Rift History of the South Atlantic Salt Basins and Its Influence on Lacustrine Source Facies Distribution. AAPG International Conference and Exhibition, Rio de Janeiro.
      Rancan, C. C., Oliveira, L. C., de Pessoa, V. C., et al., 2018. Aspectos Geológicos do Campo de Mero, Bacia de Santos. Anais do XLIX Congresso Brasileiro de Geologia, Rio de Janeiro.
      Sandwell, D. T., Smith, W. H. F., 2009. Global Marine Gravity from Retracked Geosat and ERS-1 Altimetry: Ridge Segmentation versus Spreading Rate. Journal of Geophysical Research: Solid Earth, 114(B1): B01411. https://doi.org/10.1029/2008jb006008
      Santos, E. V., Cerqueira, J. R., Prinzhofer, A., 2012. Origin of CO2 in Brazilian Basins. AAPG Annual Convention and Exhibition, Rio de Janeiro.
      Sherwood-Lollar, B., Ballentine, C. J., Onions, R. K., 1997. The Fate of Mantle-Derived Carbon in a Continental Sedimentary Basin: Integration of C/He Relationships and Stable Isotope Signatures. Geochimica et Cosmochimica Acta, 61(11): 2295-2307. https://doi.org/10.1016/S0016-7037(97)00083-5
      Tao, M., Xu, Y., Shi, B., et al., 2005. Characteristics of Mantle Degassing and Deep-Seated Geological Structures in Different Typical Fault Zones of China. Science China: Earth Sciences, 48(7): 1074-1088. https://doi.org/10.1360/04yd0040
      Thrasher, J., Fleet, A. J., 1995. Predicting the Risk of Carbon Dioxide "Pollution" in Petroleum Reservoirs. 17th International Meeting on organic Geochemistry, Donostia-San Sebastian.
      Thybo, H., Nielsen, C. A., 2009. Magma-Compensated Crustal Thinning in Continental Rift Zones. Nature, 457(7231): 873-876. https://doi.org/10.1038/nature07688
      Wycherley, H., Fleet, A., Shaw, H., 1999. Some Observations on the Origins of Large Volumes of Carbon Dioxide Accumulations in Sedimentary Basins. Marine and Petroleum Geology, 16(6): 489-494. https://doi.org/10.1016/S0264-8172(99)00047-1
      Zalán, P. V., Severino, M. C. G., Rigoti, C. A., et al., 2011. An Entirely New 3D-View of the Crustal and Mantle Structure of a South Atlantic Passive Margin-Santos, Campos and Espírito Santo Basins, Brazil. AAPG Annual Convention and Exhibition, Houston.
      Zhang, J. J., Huang, T. L., 2019. An Overview on Continental Extensional Tectonics. Earth Science, 44(5): 1705-1715 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905022.htm
      Zhao, J., Oliveira, M. J. R., Zhao, J. F., et al., 2019. Fault Activity and Its Influences on Distribution of Igneous Rocks in Libra Block, Santos Basin: Semi-Quantitative to Quantitative Assessment of Fault Activity Based on High-Resolution 3D Seismic Data. Offshore Technology Conference Brasil (OTC), Rio de Janeiro.
      贾怀存, 康洪全, 李明刚, 等, 2020. 桑托斯盆地盐下CO2聚集条件及对油气成藏影响. 西南石油大学学报(自然科学版), 42(4): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202004007.htm
      林松辉, 2005. 断裂及岩浆活动对幔源CO2气成藏的作用: 以济阳坳陷为例. 地球科学, 30(4): 473-479. doi: 10.3321/j.issn:1000-2383.2005.04.011
      刘子龙, 卢占武, 贾君莲, 等, 2019. 利用深地震反射剖面开展矿集区深部结构的探测: 现状与实例. 地球科学, 44(6): 2084-2105. doi: 10.3799/dqkx.2019.020
      马安来, 黎玉战, 张玺科, 等, 2015. 桑托斯盆地盐下J油气田CO2成因、烷烃气地球化学特征及成藏模式. 中国海上油气, 27(5): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201505002.htm
      张进江, 黄天立, 2019. 大陆伸展构造综述. 地球科学, 44(5): 1705-1715. doi: 10.3799/dqkx.2019.009
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (1367) PDF downloads(73) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return