Citation: | Gong Yajun, Zhang Kuihua, Zeng Zhiping, Qin Feng, Niu Jingjing, Fan Jie, Liu Hui, 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366 |
Bowers, G.L., 1995. Pore Pressure Estimation from Velocity Data: Accounting for Overpressure Mechanisms besides Undercompaction. SPE Drilling & Completion, 10(2): 89-95. https://doi.org/10.2118/27488-PA
|
Cox, S. F., 2010. The Application of Failure Mode Diagrams for Exploring the Roles of Fluid Pressure and Stress States in Controlling Styles of Fracture-Controlled Permeability Enhancement in Faults and Shear Zones. Geofluids, 10(1): 217-233. https://doi.org/10.1111/j.1468-8123.2010.00281.x
|
Dugan, B., Flemings, P. B., 2000. Overpressure and Fluid Flow in the New Jersey Continental Slope: Implications for Slope Failure and Cold Seeps. Science, 289(5477): 288-291. https://doi.org/10.1126/science.289.5477.288
|
Fan, C. Y., Wang, Z. L., Wang, A. G., et al., 2016. Identification and Calculation of Transfer Overpressure in the Northern Qaidam Basin, Northwest China. AAPG Bulletin, 100(1): 23-39. https://doi.org/10.1306/08031514030
|
Gong, Y.J., 2017. Mesozoic Formation Water Characteristics and Hydrocarbon Geological Significance in the Hinterland of Junggar Basin. Xinjiang Petroleum Geology, 38(5): 524-529(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201705005.htm
|
Grauls, D. J., Baleix, J. M., 1994. Role of Overpressures and In Situ Stresses in Fault-Controlled Hydrocarbon Migration: A Case Study. Marine and Petroleum Geology, 11(6): 734-742. https://doi.org/10.1016/0264-8172(94)90026-4
|
Guan, B.W., 2015. Research of Structural Evolution of the Eastern Slope of Fukang Sag and Beisantai Region(Dissertation). University of Chinese Academy of Sciences, Beijing(in Chinese with English abstract).
|
Hao, F., Zhu, W. L., Zou, H. Y., et al., 2015. Factors Controlling Petroleum Accumulation and Leakage in Overpressured Reservoirs. AAPG Bulletin, 99(5): 831-858. https://doi.org/10.1306/01021514145
|
Hildenbrand, A., Krooss, B.M., Urai, J.L., 2005. Relationship between Pore Structure and Fluid Transport in Argillaceous Rocks. Solid Mechanics & Its Applications, 125(2): 231-237. http://www.researchgate.net/publication/220047809_Relationship_Between_Pore_Structure_and_Fluid_Transport_in_Argillaceous_Rocks
|
Hoesni, J.M., 2004. Origins of Overpressure in the Malay Basin and Its Influence on Petroleum Systems. University of Durham, 35(12): 12397-12401. http://core.ac.uk/download/pdf/108932.pdf
|
Hunt, J. M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. American Association of Petroleum Geologists Bulletin, 74(1): 1-12.
|
Jeans, C.V., 1994. Clay Diagenesis, Overpressure and Reservoir Quality: An Introduction. Clay Minerals, 29(4): 415-423. https://doi.org/10.1180/claymin.1994.029.4.02
|
Lahann, R.W., Swarbrick, R.E., 2011. Overpressure Generation by Load Transfer Following Shale Framework Weakening Due to Smectite Diagenesis. Geofluids, 11(4): 362-375. https://doi.org/10.1111/j.1468-8123.2011.00350.x
|
Law, B.E., Spencer, C.W., 1998. Abnormal Pressure in Hydrocarbon Environments. AAPG Memoir, 70: 1-11. http://www.onacademic.com/detail/journal_1000039774055510_9230.html
|
Lee, Y., Deming, D., 2002. Overpressures in the Anadarko Basin, Southwestern Oklahoma: Static or Dynamic? AAPG Bulletin, 86: 145-160. https://doi.org/10.1306/61eeda62-173e-11d7-8645000102c1865d
|
Liu, Z., Jin, B., He, W.Y., et al., 2002. Generation and Distribution of Abnormal Formation Pressures in Eastern Part of the Junggar Basin. Scientia Geologica Sinica, 37(S1): 91-104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZKX2002S1013&dbcode=CJFD&year=2002&dflag=pdfdown
|
Luo, X.R., Zhang, L.K., Fu, X.F., et al., 2016. Advances in Dynamics of Petroleum Migration and Accumulation in Deep Basins. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 876-889, 806(in Chinese with English abstract). http://www.researchgate.net/publication/318864983_Advancesin_Dynamics_of_Petroleum_Migration_and_Accumulation_in_Deep_Basins
|
Mann, D.M., MacKenzie, A.S., 1990. Prediction of Pore Fluid Pressures in Sedimentary Basins. Marine and Petroleum Geology, 7(1): 55-65. doi: 10.1016/0264-8172(90)90056-M
|
Osborne, M.J., Swar, R.E., 1997. Mechanisms for Generating Overpressure in Sedimentary Basins: A Reevaluation. AAPG Bulletin, 81(2): 1023-1041. https://doi.org/10.1306/522b49c9-1727-11d7-8645000102c1865d
|
Plümper, O., Botan, A., Los, C., et al., 2017. Fluid-Driven Metamorphism of the Continental Crust Governed by Nanoscale Fluid Flow. Nature Geoscience, 10(9): 685-690. https://doi.org/10.1038/ngeo3009
|
Pollyea, R. M., 2020. Explaining Long-Range Fluid Pressure Transients Caused by Oilfield Wastewater Disposal Using the Hydrogeologic Principle of Superposition. Hydrogeology Journal, 28(2): 795-803. https://doi.org/10.1007/s10040-019-02067-z
|
Shi, H.G., 2017. Jurassic Reservoir Development in Fukang Deep Sag, Central Junggar Basin. Petroleum Geology & Experiment, 39(2): 238-246(in Chinese with English abstract).
|
Sibson, R.H., Rowland, J.V., 2003. Stress, Fluid Pressure and Structural Permeability in Seismogenic Crust, North Island, New Zealand. Geophysical Journal International, 154(2): 584-594. https://doi.org/10.1046/j.1365-246X.2003.01965.x
|
Swarbrick, R.E., Osborne, M.J., Yardley, G.S., 2002. Comparison of Overpressure Magnitude Resulting from the Main Generating Mechanisms. AAPG Memoir, 76(2): 1-12. http://www.researchgate.net/publication/264739600_Comparison_of_overpressure_magnitude_resulting_from_the_main_generating_mechanisms
|
Talwani, P., Chen, L. Y., Gahalaut, K., 2007. Seismogenic Permeability, ks. Journal of Geophysical Research: Solid Earth, 112(7): B07309. https://doi.org/10.1029/2006JB004665
|
Tingay, M.R.P., Hillis, R.R., Swarbrick, R.E., et al., 2007. 'Vertically Transferred' Overpressures in Brunei: Evidence for a New Mechanism for the Formation of High-Magnitude Overpressure. Geology, 35(11): 1023-1026. https://doi.org/10.1130/g23906a.1
|
Tingay, M.R.P., Hills, R.R., Swarbrick, R.E., et al., 2009. Origin of Overpressure and Pore-Pressure Prediction in the Baram Province, Brunei. AAPG Bulletin, 93(1): 51-74. doi: 10.1306/08080808016
|
Wen, G.F., Lin, C.Y., Tian, F.C., et al., 2012. Formation Mechanism of Abnormal Pressure in Fukang Fault Belt-Beisantai Area in Eastern Junggar Basin. Xinjiang Petroleum Geology, 33(2): 149-151(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201202006.htm
|
Yang, Z., Zou, C.N., He, S., et al., 2010. Formation Mechanism of Carbonate Cemented Zones Adjacent to the Top Overpressured Surface in the Central Junggar Basin, NW China. Science China Earth Sciences, 40(4): 439-451(in Chinese). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=JDXG201004006&dbcode=CJFD&year=2010&dflag=pdfdown
|
Yardley, G.S., Swarbrick, R.E., 2000. Lateral Transfer: A Source of Additional Overpressure? Marine and Petroleum Geology, 17(4): 523-537. https://doi.org/10.1016/S0264-8172(00)00007-6
|
You, L., Zhao, Z.J., Dai, L., et al., 2019. Reservoirs Characteristics and Formation Mechanism of High Temperature and Overpressure Reservoirs from Miocene in Ying-Qiong Basin. Earth Science, 44(8): 2654-2664(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908011.htm
|
Yu, J.W., Ren, W., Wang, W.X., et al., 2015. Formation Mechanism of Toutunhe Abnormal Pressure of Middle Jurassic in Fudong Slope Area, Junggar Basin. Xinjiang Petroleum Geology, 36(5): 521-525(in Chinese with English abstract).
|
Zeng, Z.P., 2017. Characteristics of Formation Pressure System and Its Effect on Petroleum Distribution in Jurassic of Fukang Sag. Fault-Block Oil & Gas Field, 24(3): 337-341(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201703010.htm
|
Zhang, J.C., 2011. Pore Pressure Prediction from Well Logs: Methods, Modifications, and New Approaches. Earth-Science Reviews, 108(1/2): 50-63. https://doi.org/10.1016/j.earscirev.2011.06.001
|
Zhang, X., Chen, H.H., Kong, L.T., et al., 2020. The Coupling Relationship between Paleofluid Pressure Evolution and Hydrocarbon-Charging Events in the Deep of Biyang Depression, Central China. Earth Science, 45(5): 1769-1781(in Chinese with English abstract).
|
Zhao, J.Z., Li, J., Xu, Z.Y., 2017. Advances in the Origin of Overpressures in Sedimentary Basins. Acta Petrolei Sinica, 38(9): 973-998(in Chinese with English abstract).
|
宫亚军, 2017. 准噶尔盆地腹部中生界地层水特征及油气地质意义. 新疆石油地质, 38(5): 524-529. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201705005.htm
|
关宝文, 2015. 阜康凹陷东斜坡及北三台地区构造演化研究(博士学位论文). 北京: 中国科学院大学, 2-3.
|
刘震, 金博, 贺维英, 等, 2002. 准噶尔盆地东部地区异常压力分布特征及成因分析. 地质科学, 37(增刊1): 91-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX2002S1013.htm
|
罗晓容, 张立宽, 付晓飞, 等, 2016. 深层油气成藏动力学研究进展. 矿物岩石地球化学通报, 35(5): 876-889, 806. doi: 10.3969/j.issn.1007-2802.2016.05.008
|
石好果, 2017. 准噶尔盆地腹部阜康深凹带侏罗系成藏规律. 石油实验地质, 39(2): 238-246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702013.htm
|
文钢锋, 林承焰, 田福春, 等, 2012. 准东阜康断裂带-北三台地区异常高压形成机理. 新疆石油地质, 33(2): 149-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201202006.htm
|
杨智, 邹才能, 何生, 等, 2010. 准噶尔盆地腹部超压顶面附近碳酸盐胶结带的成因机理. 中国科学: 地球科学, 40(4): 439-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201004006.htm
|
尤丽, 招湛杰, 代龙, 等, 2019. 莺-琼盆地中新统高温超压储层特征及形成机制. 地球科学, 44(8): 2654-2664. doi: 10.3799/dqkx.2019.108
|
于景维, 任伟, 王武学, 等, 2015. 阜东斜坡中侏罗统头屯河组异常高压形成机理. 新疆石油地质, 36(5): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201505005.htm
|
曾治平, 2017. 阜康凹陷侏罗系压力系统特征及对油气分布的影响. 断块油气田, 24(3): 337-341. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703010.htm
|
张鑫, 陈红汉, 孔令涛, 等, 2020. 泌阳凹陷深凹区古流体压力演化与油气充注耦合关系. 地球科学, 45(5): 1769-1781. doi: 10.3799/dqkx.2019.187
|
赵靖舟, 李军, 徐泽阳, 2017. 沉积盆地超压成因研究进展. 石油学报, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm
|