Citation: | Luo Hongming, Han Xiqiu, Wang Yejian, Wu Xueting, Cai Yiyang, Yang Ming, 2021. Preliminary Study on the Enrichment Mechanism of Strategic Metals and Their Resource Prospects in Global Modern Seafloor Massive Sulfide Deposits. Earth Science, 46(9): 3123-3138. doi: 10.3799/dqkx.2020.396 |
Cathles, L. M., 2011. What Processes at Mid-Ocean Ridges Tell Us about Volcanogenic Massive Sulfide Deposits. Mineralium Deposita, 46(5-6): 639-657. https://doi.org/10.1007/s00126-010-0292-9
|
Charlou, J. L., Donval, J. P., Konn, C., et al., 2010. High Production and Fluxes of H2and CH4and Evidence of Abiotic Hydrocarbon Synthesis by Serpentinization in Ultramafic-Hosted Hydrothermal Systems on the Mid-Atlantic Ridge. In: Rona, P. A., Devey, C. W., Dyment, J., et al., eds., Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. American Geophysical Union, Washington, D. C. .
|
Chen, Y., Han, X. Q., Wang, Y. J., et al., 2020. Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation. Journal of Earth Science, 31(1): 91-101. https://doi.org/10.1007/s12583-020-0876-y
|
de Ronde, C. E. J., Massoth, G. J., Butterfield, D. A., et al., 2011. Submarine Hydrothermal Activity and Gold-Rich Mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Mineralium Deposita, 46(5-6): 541-584. https://doi.org/10.1007/s00126-011-0345-8
|
DeMets, C., Gordon, R. G., Argus, D. F, 2010. Geologically Current Plate Motions. Geophysical Journal International, 181(1): 1-80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
|
Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., et al., 2003. Isometric Logratio Transformations for Compositional Data Analysis. Mathematical Geology, 35(3): 279-300. https://doi.org/10.1023/A:1023818214614
|
Fouquet, Y., Cambon, P., Etoubleau, J., et al., 2010. Geodiversity of Hydrothermal Processes along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit. In: Rona, P. A., Devey, C. W., Dyment, J., et al., eds., Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. American Geophysical Union, Washington, D. C. .
|
Fouquet, Y., Zierenberg, R. A., Miller, D. J., et al., 1998. Shipboard Scientific Party, Middle Valley: Bent Hill Area (Site 1035). In: Fouquet, Y., Zierenberg, R. A., Miller, D. J., et al., eds., Proceedings of the Ocean Drilling Program-Initial Reports 169. The Ocean Drilling Program, College Station.
|
Fuchs, S., Hannington, M. D., Petersen, S., 2019. Divining Gold in Seafloor Polymetallic Massive Sulfide Systems. Mineralium Deposita, 54(6): 789-820. https://doi.org/10.1007/s00126-019-00895-3
|
Graedel, T. E., Harper, E. M., Nassar, N. T., et al., 2015. Criticality of Metals and Metalloids. PNAS, 112(14): 4257-4262. https://doi.org/10.1073/pnas.1500415112
|
Hannington, M. D., 2014. Volcanogenic Massive Sulfide Deposits. Treatise on Geochemistry, 47(5): 463-488. https://doi.org/10.1016/b978-0-08-095975-7.01120-7
|
Hannington, M. D., de Ronde, C. E., Petersen S., 2005. Sea-Floor Tectonics and Submarine Hydrothermal Systems. In: Hedenquist, J., Thompson, G., Goldfarb, R. J., Richards, J. P., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton
|
Hannington, M. D., Galley, A. G., Herzig, P. M., et al., 1998. Comparison of the TAG Mound and Stockwork Complex with Cyprus-Type, Massive Sulfide Deposits. In: Herzig, P. M., Humphris, S. E., Miller, D. J., et al., eds., Proceedings of the Ocean Drilling Program-Scientific Results. The Ocean Drilling Program, College Station.
|
Hannington, M. D., Jamieson, J., Monecke, T., et al., 2011. The Abundance of Seafloor Massive Sulfide Deposits. Geology, 39(12): 1155-1158. https://doi.org/10.1130/g32468.1
|
Hannington, M. D., Petersen, S., Herzig, P. M., et al., 2004. A Global Database of Seafloor Hydrothermal Systems, Including a Digital Database of Geochemical Analyses of Seafloor Polymetallic Sulfides. Geological Survey of Canada, Ottawa.
|
Hein, J. R., Mizell, K., Koschinsky, A., et al., 2013. Deep-Ocean Mineral Deposits as a Source of Critical Metals for High- and Green-Technology Applications: Comparison with Land-Based Resources. Ore Geology Reviews, 51: 1-14. https://doi.org/10.1016/j.oregeorev.2012.12.001
|
Kawasumi, S., Chiba, H., 2017. Redox State of Seafloor Hydrothermal Fluids and Its Effect on Sulfide Mineralization. Chemical Geology, 451: 25-37. https://doi.org/10.1016/j.chemgeo.2017.01.001
|
Large, R. R., 1992. Australian Volcanic-Hosted Massive Sulfide Deposits; Features, Styles, and Genetic Models. Economic Geology, 87(3): 471-510. https://doi.org/10.2113/gsecongeo.87.3.471
|
Lehrmann, B., Stobbs, I. J., Lusty P. A., et al., 2018. Insights into Extinct Seafloor Massive Sulfide Mounds at the TAG, Mid-Atlantic Ridge. Minerals, 8(7): 302. https://doi.org/10.3390/min8070302
|
Levin, L. A., Amon, D. J., Lily, H, 2020. Challenges to the Sustainability of Deep-Seabed Mining. Nature Sustainability, 3(10): 784-794. https://doi.org/10.1038/s41893-020-0558-x
|
Lipton, I., Gleeson, E., Munro, P., 2018. Preliminary Economic Assessment of the Solwara Project, Bismarck Sea, PNG. Nautilus Minerals Niugini Limited, Vancouver.
|
Lusty, P. A. J., Hein, J. R., Josso, P., 2018. Formation and Occurrence of Ferromanganese Crusts: Earth's Storehouse for Critical Metals. Elements, 14(5): 313-318. https://doi.org/10.2138/gselements.14.5.313
|
Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201904001.htm
|
Melekestseva, I. Y., Maslennikov, V. V., Tret'yakov, G. A., et al., 2017. Gold- and Silver-Rich Massive Sulfides from the Semenov-2 Hydrothermal Field, 13°31.13'N, Mid-Atlantic Ridge: A Case of Magmatic Contribution? Economic Geology, 112(4): 741-773. https://doi.org/10.2113/econgeo.112.4.741
|
Monecke, T., Petersen, S., Hannington, M. D., 2014. Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings. Economic Geology, 109(8): 2079-2101. https://doi.org/10.2113/econgeo.109.8.2079
|
Monecke, T., Petersen, S., Hannington, M. D., et al., 2016. The Minor Element Endowment of Modern Sea-Floor Massive Sulfides and Comparison with Deposits Hosted in Ancient Volcanic Successions. In: Verplanck, P. L., Hitzman, M. W., eds., Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Littleton.
|
Mosier, D. L., Berger, V. I., Singer, D. A., 2009. Volcanogenic Massive Sulfide Deposits of the World; Database and Grade and Tonnage Models. U.S. Geological Survey, Reston.
|
Murton, B. J., Lehrmann, B., Dutrieux, A. M., et al., 2019. Geological Fate of Seafloor Massive Sulphides at the TAG Hydrothermal Field (Mid-Atlantic Ridge). Ore Geology Reviews, 107: 903-925. https://doi.org/10.1016/j.oregeorev.2019.03.005
|
Padyar, F., Rahgoshay, M., Tarantola, A., et al. 2020. High ƒH2-ƒS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite. Journal of Earth Science, 31(3): 523-535. https://doi.org/10.1007/s12583-019-1023-6
|
Pak, S. J., Seo, I., Lee, K. Y., et al., 2019. Rare Earth Elements and Other Critical Metals in Deep Seabed Mineral Deposits: Composition and Implications for Resource Potential. Minerals, 9(1): 3-22. https://doi.org/10.3390/min9010003
|
Petersen, S., Herzig, P. M., Kuhn, T., et al., 2005. Shallow Drilling of Seafloor Hydrothermal Systems Using the BGS Rockdrill: Conical Seamount (New Ireland Fore-Arc) and PACMANUS (Eastern Manus Basin), Papua New Guinea. Marine Georesources & Geotechnology, 23(3): 175-193. https://doi.org/10.1080/10641190500192185
|
Petersen, S., Lehrmann, B., Murton, B. J., 2018. Modern Seafloor Hydrothermal Systems: New Perspectives on Ancient Ore-Forming Processes. Elements, 14(5): 307-312. https://doi.org/10.2138/gselements.14.5.307
|
Toffolo, L., Nimis, P., Tretyakov, G. A., et al., 2020. Seafloor Massive Sulfides from Mid-Ocean Ridges: Exploring the Causes of Their Geochemical Variability with Multivariate Analysis. Earth-Science Reviews, 201: 102958. https://doi.org/10.1016/j.earscirev.2019.102958
|
U.S. Geological Survey, 2020. Mineral Commodity Summaries 2020. U.S. Geological Survey, Reston.
|
Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract).
|
Wang, Y. J., Han, X. Q., Petersen, S., et al., 2014. Mineralogy and Geochemistry of Hydrothermal Precipitates from Kairei Hydrothermal Field, Central Indian Ridge. Marine Geology, 354: 69-80. https://doi.org/10.1016/j.margeo.2014.05.003
|
Yang, K., Scott, S. D., 2006. Magmatic Fluids as a Source of Metals in Seafloor Hydrothermal Systems. In: Christie, D. M., Fisher, C. R., Lee, S. M., et al., eds., Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D. C. .
|
Zierenberg, R. A., Fouquet, Y., Miller, D. J., et al., 1998. The Deep Structure of a Sea-Floor Hydrothermal Deposit. Nature, 392(6675): 485-488. https://doi.org/10.1038/33126
|
毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904001.htm
|
王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |