Citation: | Lei Chuang, Yin Shiyan, Ye Jiaren, Wu Jingfu, 2021. Geochemical Characteristics and Hydrocarbon Generation History of Paleocene Source Rocks in Jiaojiang Sag, East China Sea Basin. Earth Science, 46(10): 3575-3587. doi: 10.3799/dqkx.2020.399 |
Behar, F., Vandenbroucke, M., Tang, Y., et al., 1997. Thermal Cracking of Kerogen in Open and Closed Systems: Determination of Kinetic Parameters and Stoichiometric Coefficients for Oil and Gas Generation. Organic Geochemistry, 26(5/6): 321-339. https://doi.org/10.1016/S0146-6380(97)00014-4
|
Cai, J., Qi, P., Cui, M., et al., 2016. Well Analysis of Information from Drilled Wells and Revelation to Oil & Gas Exploration in Jiaojiang Sag. Offshore Oil, 36(4): 33-39 (in Chinese with English abstract).
|
Chen, C.F., Zhu, W.L., Fu, X.W., et al., 2017. Provenance Change and Its Influence in Late Paleocene, Jiaojiang Sag, East China Sea Shelf Basin. Journal of Tongji University (Natural Science), 45(10): 1522-1530, 1548 (in Chinese with English abstract).
|
Chen, J.P., Zhao, C.Y., He, Z.H., 1997. Criteria for Evaluating the Hydrocarbon Generating Potential of Organic Matter in Coal Measures. Petroleum Exploration and Development, (1): 1-5, 91 (in Chinese with English abstract).
|
Cui, J.P., Zhao, J., Ren, Z.L., et al., 2020. Geochemical Characteristics of Lower Cretaceous Source Rocks and Thermal History in the Huhehu Depression, Hailar Basin. Earth Science, 45(1): 238-250 (in Chinese with English abstract).
|
Dan, M., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7
|
de Adegoke, A. K., Abdullah, W. H., Hakimi, M. H., et al., 2015. Geochemical Characterisation and Organic Matter Enrichment of Upper Cretaceous Gongila Shales from Chad (Bornu) Basin, Northeastern Nigeria: Bioproductivity versus Anoxia Conditions. Journal of Petroleum Science and Engineering, 135: 73-87. https://doi.org/10.1016/j.petrol.2015.08.012
|
Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., et al., 1978. Organic Geochemical Indicators of Palaeoenvironmental Conditions of Sedimentation. Nature, 272(5650): 216-222. https://doi.org/10.1038/272216a0
|
Hakimi, M. H., Abdullah, W. H., 2015. Thermal Maturity History and Petroleum Generation Modelling for the Upper Jurassic Madbi Source Rocks in the Marib-Shabowah Basin, Western Yemen. Marine and Petroleum Geology, 59: 202-216. https://doi.org/10.1016/j.marpetgeo.2014.08.002
|
Hanson, A.D., Zhang, S.C., Moldowan, J.M., et al., 2000. Molecular Organic Geochemistry of the Tarim Basin, Northwest China. AAPG Bulletin, 84: 1109-1128. https://doi.org/10.1306/a9673c52-1738-11d7-8645000102c1865d
|
Huang, D.F., Zhang, D.J., Li, J.C., 1989. On Origin of 4-Methyl Steranes and Pregnanes. Petroleum Expoloration and Development, 16(3): 8-15 (in Chinese with English abstract).
|
Jiang, Z. L., Li, Y. J., Du, H. L., et al., 2015. The Cenozoic Structural Evolution and Its Influences on Gas Accumulation in the Lishui Sag, East China Sea Shelf Basin. Journal of Natural Gas Science and Engineering, 22: 107-118. https://doi.org/10.1016/j.jngse.2014.11.024
|
Lei, C., Ye, J.R., Wu, J.F., et al., 2014. Dynamic Process of Hydrocarbon Accumulation in Low-Exploration Basins: A Case Study of Xihu Depression. Earth Science, 39(7): 837-847 (in Chinese with English abstract).
|
Lei, C., Yin, S. Y., Ye, J. R., et al., 2021. Characteristics and Deposition Models of the Paleocene Source Rocks in the Lishui Sag, East China Sea Shelf Basin: Evidences from Organic and Inorganic Geochemistry. Journal of Petroleum Science and Engineering, 200: 108342. https://doi.org/10.1016/j.petrol.2021.108342
|
Li, D.Y., Guo, T.Y., Jiang, X.D., et al., 2015. Erosion Thickness Recovery and Tectonic Evolution Characterization of Southern East China Sea Shelf Basin. Oil & Gas Geology, 36(6): 913-923 (in Chinese with English abstract).
|
Li, S.J., 1999. Sedimentary Environmental Significance of Normal Alkane and the Ratio of Pristane to Phytane. Journal of the University of Petroleum, China (Edition of Natural Science), 23(5): 14-16 (in Chinese with English abstract).
|
Makeen, Y. M., Abdullah, W. H., Pearson, M. J., et al., 2016. Thermal Maturity History and Petroleum Generation Modelling for the Lower Cretaceous Abu Gabra Formation in the Fula Sub-Basin, Muglad Basin, Sudan. Marine and Petroleum Geology, 75: 310-324. https://doi.org/10.1016/j.marpetgeo.2016.04.023
|
Moldowan, J. M., Sundararaman, P., Schoell, M., 1986. Sensitivity of Biomarker Properties to Depositional Environment and/or Source Input in the Lower Toarcian of SW-Germany. Organic Geochemistry, 10(4/5/6): 915-926. https://doi.org/10.1016/S0146-6380(86)80029-8
|
Peters, K. E., Moldowan, J. M., 1991. Effects of Source, Thermal Maturity, and Biodegradation on the Distribution and Isomerization of Homohopanes in Petroleum. Organic Geochemistry, 17(1): 47-61. https://doi.org/10.1016/0146-6380(91)90039-M
|
Qian, Y., Zhang, T., Wang, Z. D., et al., 2018. Organic Geochemical Characteristics and Generating Potential of Source Rocks from the Lower-Middle Jurassic Coal-Bearing Strata in the East Junggar Basin, NW China. Marine and Petroleum Geology, 93: 113-126. https://doi.org/10.1016/j.marpetgeo.2018.02.036
|
Sachsenhofer, R. F., Popov, S. V., Akhmetiev, M. A., et al., 2017. The Type Section of the Maikop Group (Oligocene-Lower Miocene) at the Belaya River (North Caucasus): Depositional Environment and Hydrocarbon Potential. AAPG Bulletin, 101(3): 289-319. https://doi.org/10.1306/08051616027
|
Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., et al., 1995. Evidence for Gammacerane as an Indicator of Water Column Stratification. Geochimica et Cosmochimica Acta, 59(9): 1895-1900. https://doi.org/10.1016/0016-7037(95)00073-9
|
Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74: 1559-1570. https://doi.org/10.1306/0c9b251f-1710-11d7-8645000102c1865d
|
ten Haven, H. L., de Leeuw, J. W., Rullkötter, J., et al., 1987. Restricted Utility of the Pristane/Phytane Ratio as a Palaeoenvironmental Indicator. Nature, 330(6149): 641-643. https://doi.org/10.1038/330641a0
|
Tian, B., Li, X.Y., Pang, G.Y., et al., 2012. Sedimentary Systems of the Superimposed Rift-Subsidence Basin: Taking Lishui-Jiaojiang Sag of the East China Sea as an Example. Acta Sedimentologica Sinica, 30(4): 696-705 (in Chinese with English abstract).
|
Tian, Y., Ye, J.R., Lei, C., et al., 2016. Development Controlling Factors and Forming Model for Source Rock of Yueguifeng Formation in Lishui-Jiaojiang Sag, the East China Sea Continental Shelf Basin. Earth Science, 41(9): 1561-1571 (in Chinese with English abstract).
|
Tong, Z.G., Zhao, Z.G., Yang, S.C., et al., 2012. Research on Thermal Evolution and Hydrocarbon Expulsion History of Source Rocks in Low-Exploration Basins: A Case Study on Jiaojiang Sag, East China Sea Basin. Petroleum Geology & Experiment, 34(3): 319-324, 329 (in Chinese with English abstract).
|
Volkman, J. K., 1986. A Review of Sterol Markers for Marine and Terrigenous Organic Matter. Organic Geochemistry, 9(2): 83-99. https://doi.org/10.1016/0146-6380(86)90089-6
|
Wang, S.J., Hu, S.B., Li, T.J., et al., 2000. The Terrestrial Heat Flow in Junggar Basin. Chinese Science Bulletin, 45(12): 1327-1332 (in Chinese). doi: 10.1360/csb2000-45-12-1327
|
Wu, F.D., Li, S.T., Lu, Y.C., et al., 1998. The Tertiary Sea Level Changes in the East China Sea Shelf Basin. Scientia Geologica Sinica, 33(2): 214-221 (in Chinese with English abstract).
|
Xu, J.Y., Zhu, X.F., Song, Y., et al., 2019. Geochemical Characteristics and Oil-Source Correlation of Paleogene Source Rocks in the South Yellow Sea Basin. Earth Science, 44(3): 848-858(in Chinese with English abstract).
|
Yang, F., Wang, Q., Hao, F., et al., 2020. Biomarker Characteristics of Source Rock and Oil-Correlation in Raoyang Depression, Jizhong Sub-Basin. Earth Science, 45(1): 263-275(in Chinese with English abstract).
|
Yin, S., Ding, W.L., Hu, Q.J., et al., 2016. Hydrocarbon Source Rock Characteristics and Favorable Hydrocarbon-Generating Area Evaluation of Carboniferous-Permian Coal Measures Strata in Qinshui Basin, Shanxi, China. Journal of Chengdu University of Technology (Science & Technology Edition), 43(2): 163-176(in Chinese with English abstract).
|
Yin, S.Y., He, S., Lei, C., et al., 2014. Characteristics and Hydrocarbon Generation-Expulsion History of Yueguifeng Formation Source Rock in Lishui-Jiaojiang Depression, East China Sea Shelf Basin. Marine Geology Frontiers, 30(8): 35-41, 65(in Chinese with English abstract).
|
Zhang, L.P., Huang, D.F., Liao, Z.Q., 1999. Gammacerane-Geochemical Indicator of Water Column Stratification. Acta Sedimentologica Sinica, 17(1): 136-140(in Chinese with English abstract).
|
Zhang, S.L., Xia, B., 2005. Characters of Tectonic Evolution of the Lishui-Jiaojiang Sag and Oil Accumulation. Natural Gas Geoscience, 16(3): 324-328(in Chinese with English abstract).
|
Zhu, Y.M., Zhou, J., Gu, S.X., et al., 2012. Molecular Geochemistry of Eocene Pinghu Formation Coal-Bearing Source Rocks in the Xihu Depression, East China Sea Shelf Basin. Acta Petrolei Sinica, 33(1): 32-39(in Chinese with English abstract).
|
蔡佳, 祁鹏, 崔敏, 等, 2016. 椒江凹陷已钻井分析及对油气勘探的启示. 海洋石油, 36(4): 33-39. doi: 10.3969/j.issn.1008-2336.2016.04.033
|
陈春峰, 朱伟林, 付晓伟, 等, 2017. 东海椒江凹陷晚古新世物源变化. 同济大学学报(自然科学版), 45(10): 1522-1530, 1548. doi: 10.11908/j.issn.0253-374x.2017.10.015
|
陈建平, 赵长毅, 何忠华, 1997. 煤系有机质生烃潜力评价标准探讨. 石油勘探与开发, (1): 1-5, 91.
|
崔军平, 赵金, 任战利, 等, 2020. 海拉尔盆地呼和湖凹陷下白垩统烃源岩地球化学特征及热演化史. 地球科学, 45(1): 238-250. doi: 10.3799/dqkx.2018.300
|
黄第藩, 张大江, 李晋超, 1989. 论4-甲基甾烷和孕甾烷的成因. 石油勘探与开发, 16(3): 8-15. doi: 10.3321/j.issn:1000-0747.1989.03.002
|
雷闯, 叶加仁, 吴景富, 等, 2014. 低勘探程度盆地成藏动力学过程: 以西湖凹陷中部地区为例. 地球科学, 39(7): 837-847. doi: 10.3799/dqkx.2014.078
|
李德勇, 郭太宇, 姜效典, 等, 2015. 东海陆架盆地南部剥蚀厚度恢复及构造演化特征. 石油与天然气地质, 36(6): 913-923.
|
李守军, 1999. 正烷烃、姥鲛烷与植烷对沉积环境的指示意义: 以山东济阳坳陷下第三系为例. 石油大学学报(自然科学版), 23(5): 14-16. doi: 10.3321/j.issn:1000-5870.1999.05.004
|
田兵, 李小燕, 庞国印, 等, 2012. 叠合断陷盆地沉积体系分析: 以东海丽水-椒江凹陷为例. 沉积学报, 30(4): 696-705.
|
田杨, 叶加仁, 雷闯, 等, 2016. 东海陆架盆地丽水-椒江凹陷月桂峰组烃源岩发育控制因素及形成模式. 地球科学, 41(9): 1561-1571. doi: 10.3799/dqkx.2016.116
|
仝志刚, 赵志刚, 杨树春, 等, 2012. 低勘探程度盆地烃源岩热演化及排烃史研究: 以东海椒江凹陷为例. 石油实验地质, 34(3): 319-324, 329. doi: 10.3969/j.issn.1001-6112.2012.03.016
|
王社教, 胡圣标, 李铁军, 等, 2000. 准噶尔盆地大地热流. 科学通报, 45(12): 1327-1332. doi: 10.3321/j.issn:0023-074X.2000.12.019
|
武法东, 李思田, 陆永潮, 等, 1998. 东海陆架盆地第三纪海平面变化. 地质科学, 33(2): 214-221.
|
徐建永, 朱祥峰, 宋宇, 等, 2019. 南黄海盆地古近系烃源岩地球化学特征及油源对比. 地球科学, 44(3): 848-858. doi: 10.3799/dqkx.2018.377
|
杨帆, 王权, 郝芳, 等, 2020. 冀中坳陷饶阳凹陷北部烃源岩生物标志物特征与油源对比. 地球科学, 45(1): 263-275. doi: 10.3799/dqkx.2018.374
|
殷世艳, 何生, 雷闯, 等, 2014. 东海陆架盆地丽水-椒江凹陷月桂峰组烃源岩特征及生排烃史. 海洋地质前沿, 30(8): 35-41, 65.
|
尹帅, 丁文龙, 胡秋嘉, 等, 2016. 沁水盆地石炭-二叠煤系地层烃源岩特征及生烃有利区评价. 成都理工大学学报(自然科学版), 43(2): 163-176. doi: 10.3969/j.issn.1671-9727.2016.02.03
|
张立平, 黄第藩, 廖志勤, 1999. 伽马蜡烷: 水体分层的地球化学标志. 沉积学报, 17(1): 136-140. doi: 10.3969/j.issn.1000-0550.1999.01.022
|
张胜利, 夏斌, 2005. 丽水-椒江凹陷构造演化特征与油气聚集. 天然气地球科学, 16(3): 324-328. doi: 10.3969/j.issn.1672-1926.2005.03.014
|
朱扬明, 周洁, 顾圣啸, 等, 2012. 西湖凹陷始新统平湖组煤系烃源岩分子地球化学特征. 石油学报, 33(1): 32-39.
|