• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 3
    Mar.  2021
    Turn off MathJax
    Article Contents
    Xu Ziying, Wang Jun, Yao Yongjian, Tang Jianglang, Gao Hongfang, Li Xuejie, 2021. The Temporal-Spatial Distribution and Deep Structure of the Zhongnan- Liyue Fault Zone in the North of the South China Sea Basin. Earth Science, 46(3): 942-955. doi: 10.3799/dqkx.2020.400
    Citation: Xu Ziying, Wang Jun, Yao Yongjian, Tang Jianglang, Gao Hongfang, Li Xuejie, 2021. The Temporal-Spatial Distribution and Deep Structure of the Zhongnan- Liyue Fault Zone in the North of the South China Sea Basin. Earth Science, 46(3): 942-955. doi: 10.3799/dqkx.2020.400

    The Temporal-Spatial Distribution and Deep Structure of the Zhongnan- Liyue Fault Zone in the North of the South China Sea Basin

    doi: 10.3799/dqkx.2020.400
    • Received Date: 2020-11-03
    • Publish Date: 2021-03-15
    • The Zhongnan-Liyue fault zone (ZLFZ) is an important fault zone that coordinated the spread of the sub-oceanic basins in the South China Sea (SCS). In-depth study of the temporal-spatial distribution and deep structures of the ZLFZ is of great significance for understanding the multi-phase spread and tectonic evolution of the SCS Basin. Based on the geological and geophysical data including multi-channel seismic, gravity, magnetic and topographic data, this study reveals the temporal-spatial distribution, internal structural deformation and deep structures about the north segment of ZLFZ in SCS basin. The results show that (1) the width of the ZLFZ between the northwest sub-basin and the eastern sub-basin is about 25-35 km. It starts from the west side of the Zhujiang Sea valley (18.7°N, 115.5°E) and disappears at the northeast of Zhongsha bank (17.2°N, 116.0°E), and is mainly distributed in the NNW direction. The main fault of the ZLFZ is distributed along the seamounts ridge and intrusive body. The faults are mainly developed in the early stage, which are normal faults. (2) The ZLFZ was mainly developed in Oligocene to Early-Miocene and Mid-Miocene to Late-Miocene, the development was mainly inherited. (3) In the deep structures, there are not only different burial depths of the Moho on the west and east sides of the ZLFZ, but also different sedimentary thickness and oceanic crust thickness in the northwest sub-basin and eastern sub-basin. It is speculated that the ZLFZ is at least a crustal-level fault, which may even break through the lithosphere.

       

    • loading
    • Andersen, O. B., Knudsen, P., Berry, P. A. M., 2010. The DNSC08GRA Global Marine Gravity Field from Double Retracked Satellite Altimetry. Journal of Geodesy, 84(3): 191-199. https://doi.org/10.1007/s00190-009-0355-9
      Ao, W., Zhao, M. H., Qiu, X. L., et al., 2012. Crustal Structure of the Northwest Sub-Basin of the South China Sea and Its Tectonic Implication. Earth Science, 37(4): 779-790 (in Chinese with English abstract). http://www.researchgate.net/publication/286203459_Crustal_structure_of_the_Northwest_Sub-Basin_of_the_South_China_Sea_and_its_tectonic_implication
      Barckhausen, U., Engels, M., Franke, D., et al., 2014. Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 58: 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022
      Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92JB02280
      Ding, W. W., Schnabel, M., Franke, D., et al., 2012. Crustal Structure across the Northwestern Margin of South China Sea: Evidence for Magma-Poor Rifting from a Wide-Angle Seismic Profile. Acta Geologica Sinica (English Edition), 86(4): 854-866. https://doi.org/10.1111/j.1755-6724.2012.00711.x
      Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic AccretionaryProcesses. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011
      Franke, D., 2013. Rifting, Lithosphere Breakup and Volcanism: Comparison of Magma-Poor and Volcanic Rifted Margins. Marine and Petroleum Geology, 43: 63-87. https://doi.org/10.1016/j.marpetgeo.2012.11.003
      Jiang, T., Gao, H. F., He, J. K., et al., 2019. Post-Spreading Volcanism in the Central South China Sea: Insights from Zircon U-Pb Dating on Volcaniclastic Breccia and Seismic Features. Marine Geophysical Research, 40(2): 185-198. https://doi.org/10.1007/s11001-018-9368-1
      Koppers, A. A. P., 2014. On the 40Ar/39Ar Dating of Low-Potassium Ocean Crust Basalt from IODP Expedition 349, South China Sea. American Geophysical Union, Fall Meeting 2014, San Francisco.
      Li, C. F., Li, J. B., Ding, W. W., et al., 2015a. Seismic Stratigraphy of the Central South China Sea Basin and Implications for Neotectonics. Journal of Geophysical Research: Solid Earth, 120(3): 1377-1399. https://doi.org/10.1002/2014JB011686
      Li, C. F., Lin, J., Kulhanek, D. K., et al., 2015b. Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics. International Ocean Discovery Program, College Station. http://dx.doi.org/10.14379/iodp.proc.349.2015
      Li, C. F., Song, T. R., 2012. Magnetic Recording of the Cenozoic Oceanic Crustal Accretion and Evolution of the South China Sea Basin. Chinese Science Bulletin, 57(24): 3165-3181. https://doi.org/10.1007/s11434-012-5063-9
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567
      Li, J. B., Ding, W. W., Gao, J. Y., et al., 2011. Cenozoic Evolution Model of the Sea-Floor Spreading in South China Sea: New Constraints from High Resolution Geophysical Data. Chinese Journal of Geophysics, 54(12): 3004-3015 (in Chinese with English abstract). doi: 10.1002/cjg2.1672/full
      Li, Y. H., Liu, H. L., Zhu, R. W., et al., 2017. Extension of the Zhongnan-Siling Fault Zone in South China Sea and Its Bearing on Seafloor Spreading. Marine Geology & Quaternary Geology, 37(2): 82-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201702009.htm
      Lin, J., Li, J. B., Xu, Y. G., et al., 2019. Ocean Drilling and Major Advances in Marine Geological and Geophysical Research of the South China Sea. Acta Oceanologica Sinica, 41(10): 125-140 (in Chinese with English abstract).
      Mao, Y. H., Zhao, Z. X., Sun, Z., 2020. Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin. Earth Science, 45(5): 1622-1635 (in Chinese with English abstract).
      Meyer, B., Saltus, R., Chulliat, A., 2017. EMAG2: Earth Magnetic Anomaly Grid (2-Arc-Minute Resolution) Version 3. National Centers for Environmental Information, NOAA, Washington D.C. .
      Ouyang, Q., Wu, Z. L., Wei, X. D., et al., 2017. Comparison of Crustal Structures in the Fossil Spreading Center of South China Sea Basins and the Tectonic Significance. Chinese Science Bulletin, 62(21): 2380-2391. https://doi.org/10.1360/n972017-00079
      Qiu, Y., Wang, Y. M., Huang, W. K., et al., 2016. Jump Event of Mid-Ocean Ridge during the Eastern Subbasin Evolution of the South China Sea. Interpretation, 4(3): SP67-SP77. https://doi.org/10.1190/int-2015-0154.1
      Ren, J. Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501009
      Ruan, A. G., Wei, X. D., Niu, X. W., et al., 2016. Crustal Structure and Fracture Zone in the Central Basin of the South China Sea from Wide Angle Seismic Experiments Using OBS. Tectonophysics, 688: 1-10. https://doi.org/10.1016/j.tecto.2016.09.022
      Schlüter, H. U., Hinz, K., Block, M., 1996. Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea. Marine Geology, 130(1-2): 39-78. https://doi.org/10.1016/0025-3227(95)00137-9
      Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022
      Sun Z., Jian Z. M., Stock J. M., et al., 2018. South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368. International Ocean Discovery Program. College Station. https://doi.org/10.14379/iodp.proc.367368.2018.
      Sun, Z., Ding, W. W., Zhao, X. X., et al., 2019. The Latest Spreading Periods of the South China Sea: New Constraints from Macrostructure Analysis of IODP Expedition 349 Cores and Geophysical Data. Journal of Geophysical Research: Solid Earth, 124(10): 9980-9998. https://doi.org/10.1029/2019jb017584
      Sun, Z., Zhou, D., Zhong, Z. H., et al., 2006. Research on the Dynamics of the South China Sea Opening: Evidence from Analogue Modeling. Science China Earth Sciences, 49(3): 258-271. https://doi.org/10.1007/s11430-006-1053-6
      Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, Washington, D. C. . https://doi.org/10.1029/gm027p0023
      Wang, Q., Zhao, M. H., Zhang, H. Y., et al., 2020. Crustal Velocity Structure of the Northwest Sub-Basin of the South China Sea Based on Seismic Data Reprocessing. Science China Earth Sciences, 63(11): 1791-1806. https://doi.org/10.1007/s11430-020-9654-4
      Wang, Y. J., Han, X. Q., Luo, Z. H., et al., 2009. Late Miocene Magmatism and Evolution of Zhenbei-Huangyan Seamount in the South China Sea: Evidence from Petrochemistry and Chronology. Acta Oceanologica Sinica, 31(4): 93-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC200904010.htm
      Wu, Z. L., Li, J. B., Ruan, A. G., et al., 2012. Crustal Structure of the Northwestern Sub-Basin, South China Sea: Results from a Wide-Angle Seismic Experiment. Science China Earth Sciences, 55(1): 159-172. https://doi.org/10.1007/s11430-011-4324-9
      Xu, X., Wang, X. Q., Peng, D., et al., 2018. Characteristics and Research of Heat Flow in the Northwest Sub-Basin and Its Adjacent Areas of the South China Sea. Earth Science, 43(10): 3391-3398 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810005.htm
      Xu, Y. G., Wei, J. X., Qiu, H. N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. ChineseScienceBulletin, 57(24): 3150-3164. https://doi.org/10.1007/s11434-011-4921-1
      Xu, Z. Y., Wang, J., Gao, H. F., et al., 2019. Research Progress on the Zhongnan-Liyue Fault Zone in the South China Sea Basin. Journal of Tropical Oceanography, 38(2): 86-94 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-RDHY201902010.htm
      Xu, Z. Y., Wang, J., Gao, H. F., et al., 2020. The Characteristics and Formation Mechanism of the Faults in the Southern Part of the Zhongsha Bank. Geology in China, 47(5): 1438-1446 (in Chinese with English abstract).
      Yan, P., Wang, Y. L., Liu, H. L., 2008. Topography of Oceanic Basin in South China Sea and NW-Directed Faults. Journal of Tropical Oceanography, 27(3): 30-37 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-tropical-oceanography_thesis/0201252196736.html
      Yang, S. X., Qiu, Y., Zhu, B. D., et al., 2015. Atlas of Geology and Geophysics of the South China Sea. China Navigation Publications Press, Tianjin (in Chinese with English abstract).
      Yao, B. C., 1995. Characteristics and Tectonic Meaning of Zhongnan-Liyue Fault. Geological Research of South China Sea, 7: 1-14 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHDZ199500000.htm
      Zhang, Y. Z., Qi, J. F., Wu, J. F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201902023.htm
      敖威, 赵明辉, 丘学林, 等, 2012. 南海西北次海盆及其邻区地壳结构和构造意义. 地球科学, 37(4): 779-790. http://www.earth-science.net/article/id/2284
      黎雨晗, 刘海龄, 朱荣伟, 等, 2017. 南海中南-司令断裂带的延伸特征及其与南海扩张演化的关系. 海洋地质与第四纪, 37(2): 82-98. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201702009.htm
      李家彪, 丁巍伟, 高金耀, 等, 2011. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12): 3004-3015. doi: 10.3969/j.issn.0001-5733.2011.12.003
      林间, 李家彪, 徐义刚, 等, 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201910008.htm
      毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制. 地球科学, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160
      任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm
      王叶剑, 韩喜球, 罗照华, 等, 2009. 晚中新世南海珍贝-黄岩海山岩浆活动及其演化: 岩石地球化学和年代学证据. 海洋学报, 31(4): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200904010.htm
      徐行, 王先庆, 彭登, 等, 2018. 南海西北次海盆及其邻区的地热流特征与研究. 地球科学, 43(10): 3391-3398. doi: 10.3799/dqkx.2017.606
      徐子英, 汪俊, 高红方, 等, 2019. 南海海盆中南-礼乐断裂带研究进展. 热带海洋学报, 38(2): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201902010.htm
      徐子英, 汪俊, 高红芳, 等, 2020. 中沙地块南部断裂发育特征及其成因机制. 中国地质, 47(5): 1438-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202005012.htm
      阎贫, 王彦林, 刘海龄, 2008. 南海海盆地形与NW向断裂. 热带海洋学报, 27(3): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200803007.htm
      杨胜雄, 邱燕, 朱本铎, 等, 2015. 南海地质地球物理图系. 天津: 中国航海图书出版社.
      姚伯初, 1995. 中南-礼乐断裂的特征及其构造意义. 南海地质研究, 7: 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-NHDZ199500000.htm
      张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (1631) PDF downloads(147) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return