• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 5
    May  2021
    Turn off MathJax
    Article Contents
    Gao Yangdong, Zhang Xiangtao, Li Zhigao, Ding Lin, Li Xiaoping, 2021. Variability in Sequence Stratigraphic Architectures of Lower-Middle Miocene Pearl River Delta, Northern Enping Sag, Pearl River Mouth Basin: Implications for Lithological Trap Development. Earth Science, 46(5): 1758-1770. doi: 10.3799/dqkx.2021.011
    Citation: Gao Yangdong, Zhang Xiangtao, Li Zhigao, Ding Lin, Li Xiaoping, 2021. Variability in Sequence Stratigraphic Architectures of Lower-Middle Miocene Pearl River Delta, Northern Enping Sag, Pearl River Mouth Basin: Implications for Lithological Trap Development. Earth Science, 46(5): 1758-1770. doi: 10.3799/dqkx.2021.011

    Variability in Sequence Stratigraphic Architectures of Lower-Middle Miocene Pearl River Delta, Northern Enping Sag, Pearl River Mouth Basin: Implications for Lithological Trap Development

    doi: 10.3799/dqkx.2021.011
    • Received Date: 2020-06-11
    • Publish Date: 2021-05-15
    • In view of the theory and application of sequence stratigraphy in the marine deltaic facies, in this paper it selects the Lower-Middle Miocene (T50-T35) acient Pearl River delta in the north of the Enping sag, Pearl River Mouth basin as the target to carry out detailed anatomy. On the basis of digesting and absorbing the latest development of "depositional sequence" theory, combined with the development characteristics of ancient Pearl River delta and well seismic data conditions, a high-frequency sequence stratigraphic scheme is proposed on the basis of four types of surfaces, namely the sequence boundary (SB), maximum regressive surface (MRS), maximum flooding surface (MFS) and high-order flooding surface (FS). The results reveal that the most striking feature of the sequence stratigraphy of this area is the extensive development of the lowstand systems tracts. Constrained by the high-resolution sequence framework, the seismic sedimentology technology is further used to carry out the fine sedimentary analysis. The results show that the lowstand systems tracts in the study area are mainly composed of large intersecting braided channels, with large thickness and continuous distribution of sand bodies. In contrast, the sand content of transgressive and highstand systems tracts is obviously lower, with sinuous, low-energy river channel or shore-parallel bars as the main body, signifying greater lithologic traps potential. In addition, combined with the results of sequence architecture classification, it is proposed that the sixth member of Hanjiang Formation and the first member of Zhujiang Formation, which are dominated by A-type sequence architecture (highstand systems tracts dominated), have great lithologic trap potential. The conclusions of this study have certain guiding significance for the exploration of lithologic traps in the Pearl River Mouth basin and other marine basins.

       

    • loading
    • Bourget, J., Bruce Ainsworth, R., Thompson, S., 2014. Seismic Stratigraphy and Geomorphology of a Tide or Wave Dominated Shelf-Edge Delta (NW Australia): Process-Based Classification from 3D Seismic Attributes and Implications for the Prediction of Deep-Water Sands. Marine and Petroleum Geology, 57: 359-384. doi: 10.1016/j.marpetgeo.2014.05.021
      Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375.
      Catuneanu, O., Abreu, V., Bhattacharya, J.P., et al., 2009. Towards the Standardization of Sequence Stratigraphy. Earth-Science Review, 92: 1-33. doi: 10.1016/j.earscirev.2008.10.003
      Catuneanu, O., Zecchin, M., 2013. High-Resolution Sequence Stratigraphy of Clastic Shelves Ⅱ: Controls on Sequence Development. Marine and Petroleum Geology, 39: 26-38. doi: 10.1016/j.marpetgeo.2012.08.010
      Darmadi, Y., Willis, B. J., Dorobek, S. L., 2007. Three-Dimensional Seismic Architecture of Fluvial Sequences on the Low-Gradient Sunda Shelf, Offshore Indonesia. Journal of Sedimentary Research, 77(3-4): 225-238. http://adsabs.harvard.edu/abs/2007JSedR..77..225D
      Embry, A.F., 2009. Practical Sequence Stratigraphy. Canadian Society of Petroleum Geologists, Calgary, 79.
      Ethridge, F.G., Schumm, S.A., 2007. Fluvial Seismic Geomorphology: A View from the Surface. Geological Society, London, Special Publications, 277(1): 205-222. doi: 10.1144/GSL.SP.2007.277.01.12
      Gong, L., Zhu, H.T., Shu, Y., et al., 2014. Distribution of Middle-Deep Lacustrine Source Rocks within Sequence Stratigraphic Framework of Wenchang Formation in Enping Depression, the Pearl River Mouth Basin. Earth Science, 39(5): 546-556 (in Chinese with English abstract).
      Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of Fluctuating Sea Levels since the Triassic. Science, 235(4793): 1156-1167. doi: 10.1126/science.235.4793.1156
      He, M., Zhu, W.L., Wu, Z., et al., 2019. Neotectonic Movement Characteristics and Hydrocarbon Accumulation of the Pearl River Mouth Basin. China Offshore Oil and Gas, 31(5): 9-20 (in Chinese with English abstract).
      He, M., Zhuo, H., Chen, W., et al., 2017. Sequence Stratigraphy and Depositional Architecture of the Pearl River Delta System, Northern South China Sea: An Interactive Response to Sea Level, Tectonics and Paleoceanography. Marine and Petroleum Geology, 84: 76-101. doi: 10.1016/j.marpetgeo.2017.03.022
      Jervey, M.T., 1988. Quantitative Geological Modeling of Siliciclastic Rock Sequences and their Seismic Expression. SEPM Special Publication, 42: 47-69.
      Jones, G.E., Hodgson, D.M., Flint, S.S., 2015. Lateral Variability in Clinoform Trajectory, Process Regime, and Sediment Dispersal Patterns beyond the Shelf-Edge Rollover in Exhumed Basin Margin-Scale Clinothems. Basin Research, 27: 657-680. doi: 10.1111/bre.12092
      Liang, W., Li, X.P., 2020. Lithological Exploration and Potential in Mixed Siliciclastic-Carbonate Depositional Area of Eastern Pearl River Mouth Basin. Earth Science, 45(10): 3870-3884 (in Chinese with English abstract).
      Madof, A. S., Harris, A. D., Connell, S. D., 2016. Nearshore Along-Strike Variability: Is the Concept of the Systems Tract Unhinged?. Geology, 44 (4): 315-318. https://doi.org/10.1130/G37613.1
      Miall, A. D., 2002. Architecture and Sequence Stratigraphy of Pleistocene Fluvial Systems in the Malay Basin, Based on Seismic Time-Slice Analysis. AAPG Bulletin, 86(7): 1201-1216.
      Miall, A.D., 2014. Fluvial Depositional Systems. Springer, Amsterdam, 316.
      Miller, K. G., Browning, J. V., Schmelz, W. J., et al., 2017. Back to Basics of Sequence Stratigraphy: Early Miocene and Mid-Cretaceous Examples from the New Jersey Paleoshelf. Journal of Sedimentary Research, 8(1): 148-176. https://doi.org/10.2110/jsr.2017.73
      Neal, J., Abreu, V., 2009. Sequence Stratigraphy Hierarchy and the Accommodation Succession Method. Geology, 37(9): 779-782. doi: 10.1130/G25722A.1
      Neal, J. E., Abreu, V., Bohacs, K. M., et al., 2016. Accommodation Succession (δA/δS) Sequence Stratigraphy: Observational Method, Utility and Insights into Sequence Boundary Formation. Journal of the Geological Society, 173(5): 803-816. https://doi.org/10.1144/jgs2015-165
      Payton, C.E., 1977. Seismic Stratigraphy-Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 26: 516. http://lib-phds1.weizmann.ac.il/vufind/Record/000066987
      Posamentier, H.W., Allen, G.P., 1999. Siliciclastic Sequence Stratigraphy: Concepts and Applications. SEPM Concepts, Sedimentology, Paleontology, 7: 210.
      Posamentier, H. W., Kolla, V., 2003. Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings. Journal of Sedimentary Research, 73(3): 367-388. doi: 10.1306/111302730367
      Qin, G.Q., 1996. Application of Micropaleontology to the Sequence Stratigraphic Studies of Late Cenozoic in the Zhujiang River Mouth Basin. Marine Geology & Quaternary Geology, 16(4): 1-18 (in Chinese with English abstract).
      Reijenstein, H.M., Posamentier, H.W., Bhattacharya, J.P., 2011. Seismic Geomorphology and High-Resolution Seismic Stratigraphy of Inner-Shelf Fluvial, Estuarine, Deltaic, and Marine Sequences, Gulf of Thailand. American Association of Petroleum Geologists Bulletin, 95: 1959-1990. doi: 10.1306/03151110134
      Sun, Z., Zhong, Z., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. J. Asian Earth Sci., 34: 544-556. doi: 10.1016/j.jseaes.2008.09.002
      Wagoner, J.C., Mitchum, R.M., Campion, K., et al., 1990. Siliciclastic Sequence Stratigraphy in Well Logs, Core, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies. American Association of Petroleum Geologists Methods in Exploration Series, 7: 55.
      Wilgus, C.K., Hastings, B.S., Posamentier, H., et al., 1988. Sea-Level Changes: An Integrated Approach. SEPM Special Publication, 42: 407. http://adsabs.harvard.edu/abs/1986Geo....14..535R
      Xiong, W.L., Zhu, J.Z., Yang, X.Y., et al., 2020. Study on the Genetic and Accumulation Process of Oil and Gas in the North Uplift Structural Belt of Enping Sag. China Offshore Oil and Gas, 32(1): 54-65 (in Chinese with English abstract).
      Zecchin, M., 2007. The Architectural Variability of Small-Scale Cycles in Shelf and Ramp Clastic Systems: The Controlling Factors. Earth-Science Reviews, 84: 21-55. doi: 10.1016/j.earscirev.2007.05.003
      Zecchin, M., Catuneanu, O., 2017. High-Resolution Sequence Stratigraphy of Clastic Shelves Ⅵ: Mixed Siliciclastic-Carbonate Systems. Marine and Petroleum Geology, 88: 712-723. doi: 10.1016/j.marpetgeo.2017.09.012
      Zeng, H., Hentz, T.F., 2004. High-Frequency Sequence Stratigraphy from Seismic Sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal Area, Offshore Louisiana. American Association of Petroleum Geologists Bulletin, 88: 153-174. doi: 10.1306/10060303018
      Zeng, H., Zhu, X., Liu, Q., et al., 2020. An Alternative, Seismic-Assisted Method of Fluvial Architectural- Element Analysis in the Subsurface: Neogene, Shaleitian Area, Bohai Bay Basin, China. Marine and Petroleum Geology, 87: 118. https://doi.org/10.1016/j.marpetgeo.2020.104435
      Zhang, Y.Z., Qi, J.F., Wu, J.F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqkx201902020
      Zhu, H.T., Liu, K.Y., Zhu, X.M., et al., 2018. Varieties of Sequence Stratigraphic Configurations in Continental Basins. Earth Science, 43(3): 770-785 (in Chinese with English abstract).
      Zhu, H.T., Yang, X.H., Shu, Y., et al., 2012. The Sequence Stratigraphic Architecture of Continental Lake Basin and Its Significance on Lithofacies Prediction: Taking Huizhou Sag in Zhujiangkou Basin as an Example. Earth Science Frontiers, 19(1): 32-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201201006.htm
      Zhu, X.M., Dong, Y.L., Zeng, H.L., et al., 2019. New Development Trend of Sedimentary Geology: Seismic Sedimentology. Journal of Palaeogeography, 21(2): 189-201 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201902001.htm
      Zhuo, H., Wang, Y., Shi, H., et al., 2015. Contrasting Fluvial Styles across the Mid-Pleistocene Climate Transition in the Northern Shelf of the South China Sea: Evidence from 3D Seismic Data. Quaternary Science Reviews, 129: 128-146. doi: 10.1016/j.quascirev.2015.10.012
      Zhuo, H., Wang, Y., Sun, Z., et al., 2019. Along-Strike Variability in Shelf-Margin Morphology and Accretion Pattern: An Example from the Northern Margin of the South China Sea. Basin Research, 31: 431-460. doi: 10.1111/bre.12329
      龚丽, 朱红涛, 舒誉, 等, 2014. 珠江口盆地恩平凹陷文昌组层序格架中中-深湖相烃源岩空间展布规律及发育模式. 地球科学, 39(5): 546-556. doi: 10.3799/dqkx.2014.052
      何敏, 朱伟林, 吴哲, 等, 2019. 珠江口盆地新构造运动特征与油气成藏. 中国海上油气, 31(5): 9-20.
      梁卫, 李小平, 2020. 珠江口盆地东部碎屑岩-碳酸盐混合沉积区岩性油气藏形成地质条件与潜力. 地球科学, 45(10): 3870-3884. doi: 10.3799/dqkx.2020.174
      秦国权, 1996. 微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用. 海洋地质与第四纪地质, 16(4): 1-18.
      熊万林, 朱俊章, 杨兴业, 等, 2020. 恩平凹陷北带隆起构造带油气成因来源及成藏过程研究. 中国海上油气, 32(1): 54-65.
      张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542
      朱红涛, 刘可禹, 朱筱敏, 等, 2018. 陆相盆地层序构型多元化体系. 地球科学, 43(3): 770-785. doi: 10.3799/dqkx.2018.906
      朱红涛, 杨香华, 舒誉, 等, 2012. 陆相湖盆层序构型及其岩性预测意义——以珠江口盆地惠州凹陷为例. 地学前缘, 19(1): 32-39.
      朱筱敏, 董艳蕾, 曾洪流, 等, 2019. 沉积地质学发展新航程——地震沉积学. 古地理学报, 21(2): 189-201.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (2026) PDF downloads(76) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return