Citation: | Wang Xuan, Cao Jun, Zhang Gaizhi, 2021. Origin of Ore-Forming Magmas Associated with Ni-Cu Sulfide Deposits in Orogenic Belts: Case Study of Permian Huangshannan Magmatic Ni-Cu Sulfide Deposit, East Tianshan, NW China. Earth Science, 46(11): 3829-3849. doi: 10.3799/dqkx.2021.015 |
Altunkaynak, Ş., Ünal, A., Howarth, G. H., et al., 2019. The Origin of Low-Ca Olivine from Ultramafic Xenoliths and Host Basaltic Lavas in a Back-Arc Setting, James Ross Island, Antarctic Peninsula. Lithos, 342/343: 276-287. https://doi.org/10.1016/j.lithos.2019.05.039
|
Ammannati, E., Jacob, D. E., Avanzinelli, R., et al., 2016. Low Ni Olivine in Silica-Undersaturated Ultrapotassic Igneous Rocks as Evidence for Carbonate Metasomatism in the Mantle. Earth and Planetary Science Letters, 444: 64-74. https://doi.org/10.1016/j.epsl.2016.03.039
|
Bao, J., 2019. Mg-Sr-Nd Isotopic Constraints on the Genesis of the Jinchuan Cu-Ni-(PGE) Sulfide Deposit (Dissertation). Lanzhou University, Lanzhou, 1-61 (in Chinese with English abstract).
|
Barnes, S.J., Lightfoot, P.C., 2005. Formation of Magmatic Nickel Sulfide Ore Deposit and Processes Affecting Their Copper and Platinum Group Element Contents. Economic Geology One Hundredth Anniversary Volume, 179-213. https://doi.org/10.5382/AV100
|
Cao, Y. H., Wang, C. Y., Wei, B., 2020. Magma Oxygen Fugacity of Mafic-Ultramafic Intrusions in Convergent Margin Settings: Insights for the Role of Magma Oxidation States on Magmatic Ni-Cu Sulfide Mineralization. American Mineralogist, 105(12): 1841-1856. https://doi.org/10.2138/am-2020-7351
|
Chai, G., Naldrett, A. J., 1992. The Jinchuan Ultramafic Intrusion: Cumulate of a High-Mg Basaltic Magma. Journal of Petrology, 33(2): 277-303. https://doi.org/10.1093/petrology/33.2.277
|
Chung, S. L., Wang, K. L., Crawford, A. J., et al., 2001. High-Mg Potassic Rocks from Taiwan: Implications for the Genesis of Orogenic Potassic Lavas. Lithos, 59(4): 153-170. https://doi.org/10.1016/S0024-4937(01)00067-6
|
Deng, Y. F., 2011. Geneses of the Huangshandong and Huangshanxi Mafic-Ultramafic Intrusions and Hosted Cu-Ni Sulfide Deposits, Northern Tianshan, Xinjiang (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 1-177 (in Chinese with English abstract).
|
Deng, Y. F., Song, X.Y., Xie, W., et al., 2021. Determination of Sedimentary Ages of Strata in the Huangshan-Jingerquan Mineralization Belt and Its Geological Significance. Acta Geologica Sinica, 95(2): 362-376 (in Chinese with English abstract).
|
DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012-821X(81)90153-9
|
Fang, L.R., Tang, D.M., Qin, K.Z., et al., 2019. The Indicative Significance of Amphibole Composition to Magmatic Process of Copper-Nickel Deposits in Eastern Tianshan. Acta Petrologica Sinica, 35(7): 2061-2085 (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.07.08
|
Foley, S. F., Prelevic, D., Rehfeldt, T., et al., 2013. Minor and Trace Elements in Olivines as Probes into Early Igneous and Mantle Melting Processes. Earth and Planetary Science Letters, 363: 181-191. https://doi.org/10.1016/j.epsl.2012.11.025
|
Gao, J.F., Lu, J.J., Lai, M.Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. Journal of Nanjing University (Natural Science), 39(6): 844-850 (in Chinese with English abstract).
|
Gao, J. F., Zhou, M. F., 2013. Generation and Evolution of Siliceous High Magnesium Basaltic Magmas in the Formation of the Permian Huangshandong Intrusion (Xinjiang, NW China). Lithos, 162/163: 128-139. https://doi.org/10.1016/j.lithos.2013.01.002
|
Gaul, O. F., Griffin, W. L., O'Reilly, S. Y., et al., 2000. Mapping Olivine Composition in the Lithospheric Mantle. Earth and Planetary Science Letters, 182(3/4): 223-235. https://doi.org/10.1016/S0012-821X(00)00243-0
|
Ghiorso, M. S., Sack, R. O., 1995. Chemical Mass Transfer in Magmatic Processes Ⅳ. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119(2/3): 197-212. https://doi.org/10.1007/BF00307281
|
Han, B. F., Guo, Z. J., Zhang, Z. C., et al., 2010. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geological Society of America Bulletin, 122(3/4): 627-640. https://doi.org/10.1130/b26491.1
|
Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3-4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001
|
Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2007. Re-Os Dating of the Kalatongke Cu-Ni Deposit, Altay Shan, NW China, and Resulting Geodynamic Implications. Ore Geology Reviews, 32(1/2): 452-468. https://doi.org/10.1016/j.oregeorev.2006.11.004
|
Hart, S. R., 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309(5971): 753-757. https://doi.org/10.1038/309753a0
|
Herzberg, C., Asimow, P. D., 2008. Petrology of Some Oceanic Island Basalts: PRIMELT2. XLS Software for Primary Magma Calculation. Geochemistry, Geophysics, Geosystems, 9(9): Q09001. https://doi.org/10.1029/2008gc002057
|
Hofmann, A. W., Jochum, K. P., 1996. Source Characteristics Derived from Very Incompatible Trace Elements in Mauna Loa and Mauna Kea Basalts, Hawaii Scientific Drilling Project. Journal of Geophysical Research: Solid Earth, 101(B5): 11831-11839. https://doi.org/10.1029/95JB03701
|
Howarth, G. H., Harris, C., 2017. Discriminating between Pyroxenite and Peridotite Sources for Continental Flood Basalts (CFB) in Southern Africa Using Olivine Chemistry. Earth and Planetary Science Letters, 475: 143-151. https://doi.org/10.1016/j.epsl.2017.07.043
|
Hu, A.Q., Zhang, G.X., Chen, Y.B., 2006. Isotope Geochronology and Geochemistry for Major Geological Events of Continental Crustal Evolution of Xinjiang, China. Geological Publishing House, Beijing, 427.
|
Johnson, M.C., Plank, T., 1999. Dehydration and Melting Experiments Constrain the Fate of Subducted Sediments. Geochemistry, Geophysics, Geosystems, (1): 1007. https://doi.org/10.1029/1999GC000014
|
Kang, J., Chen, L.M., Song, X.Y., et al., 2019. Trace Elements in Olivines from the Giant Jinchuan Ni-Cu-(PGE) Deposit, NW China, and Its Geological Implication. Advances in Earth Science, 34(4): 382-398 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201904008.htm
|
Khain, E.V., Bibikova, E.V., Salnikova, E.B., et al., 2003. The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic: New Geochronologic Data and Palaeotectonic Reconstructions. Precambrian Research, 122: 329-358. https://doi.org/10.1016/S0301-9268(02)00218-8
|
Le Bas, M.J., 2000. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. Journal of Petrology, 41: 1467-1470. https://doi.org/10.1093/petrology/41.10.1467
|
Lesher, C.M., Keays, R.R., 2002. Komatiite-Associated Ni-Cu-(PGE) Deposits: Mineralogy, Geochemistry, and Genesis. In: Cabri, L.J., ed., The Geology, Geochemistry, Mineralogy, and Mineral Beneficiation of the Platinum-Group Elements. Canadian Institute of Mining, Metallurgy, and Petroleum, 54: 579-617.
|
Li, C.S., Ripley, E.M., 2011. The Jinchuan Ni-Cu-(PGE) Deposit: Tectonic Setting, Magma Evolution, Ore Genesis, and Exploration Implications. In: Li, C.S., Ripley, E.M., eds., Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry, and Genesis. Society of Economic Geology Special Publication, 17: 164-180. https://doi.org/10.5382/Rev.17
|
Li, C. S., Xu, Z. H., Waal, S. A., et al., 2004. Compositional Variations of Olivine from the Jinchuan Ni-Cu Sulfide Deposit, Western China: Implications for Ore Genesis. Mineralium Deposita, 39(2): 159-172. https://doi.org/10.1007/s00126-003-0389-5
|
Li, N., 2020. Metallogenesis of the Xiaobaishitou W-(Mo) Deposit in East Tianshan, Xinjiang (Dissertation). Chinese Academy of Geological Sciences, Beijing, 1-195 (in Chinese with English abstract).
|
Libourel, G., 1999. Systematics of Calcium Partitioning between Olivine and Silicate Melt: Implications for Melt Structure and Calcium Content of Magmatic Olivines. Contributions to Mineralogy and Petrology, 136: 63-80. https://doi.org/10.1007/s004100050524
|
Lu, Y. G., Lesher, C. M., Deng, J., 2019. Geochemistry and Genesis of Magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) Deposits in China. Ore Geology Reviews, 107: 863-887. https://doi.org/10.1016/j.oregeorev.2019.03.024
|
Maier, W. D., Barnes, S. J., Sarkar, A., et al., 2010. The Kabanga Ni Sulfide Deposit, Tanzania: I. Geology, Petrography, Silicate Rock Geochemistry, and Sulfur and Oxygen Isotopes. Mineralium Deposita, 45(5): 419-441. https://doi.org/10.1007/s00126-010-0280-0
|
Mao, Y.J., Qin, K.Z., Barnes, S.J., et al., 2017. Genesis of the Huangshannan High-Ni Tenor Magmatic Sulfide Deposit in the Eastern Tianshan, Northwest China: Constraints from PGE Geochemistry and Os-S Isotopes. Ore Geology Reviews, 90: 591-606. https://doi.org/10.1016/j.oregeorev.2017.05.015
|
Mao, Y.J., Qin, K.Z., Li, C., et al., 2014. Petrogenesis and Ore Genesis of the Permian Huangshanxi Sulfide Ore-Bearing Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, Western China. Lithos, 200: 111-125. https://doi.org/10.1016/j.lithos.2014.04.008
|
Mao, Y.J., Qin, K.Z., Tang, D.M., 2018. Characteristics, Genetic Mechanism, and Exploration Perspective of Ni-Rich Sulfide in Magmatic Ni-Cu Systems. Acta Petrologica Sinica, 34(8): 2410-2424 (in Chinese with English abstract).
|
Mao, Y. J., Qin, K. Z., Tang, D. M., et al., 2016. Crustal Contamination and Sulfide Immiscibility History of the Permian Huangshannan Magmatic Ni-Cu Sulfide Deposit, East Tianshan, NW China. Journal of Asian Earth Sciences, 129: 22-37. https://doi.org/10.1016/j.jseaes.2016.07.028
|
Mavrogenes, J. A., O'Neill, H. S. C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7/8): 1173-1180. https://doi.org/10.1016/S0016-7037(98)00289-0
|
Naldrett, A.J., 2004. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Springer-Verlag, Berlin, 1-728. https://doi.org/10.1007/978-3-662-08444-1
|
Naldrett, A.J., 2011. Fundamentals of Magmatic Sulfide Deposits. In: Li, C.S., Ripley E.M., eds., Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry, and Genesis. Society of Economic Geology Special Publication, 17: 1-26. https://doi.org/10.5382/Rev.17
|
Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. https://doi.org/10.1039/c1ja10172b
|
Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
|
Pearce, J.A., Thirlwall, M.F., Ingram, G., et al., 1992. Isotopic Evidence for the Origin of Boninites and Related Rocks Drilled in the Izu-Bonin (Ogasawara) Forearc, Leg 125. Proceedings of the Ocean Drilling Program Scientific Results, 125: 237-261. https://doi.org/10.2973/odp.proc.sr.125.134.1992
|
Piña, R., Lunar, R., Ortega, L., et al., 2006. Petrology and Geochemistry of Mafic-Ultramafic Fragments from the Aguablanca Ni-Cu Ore Breccia, Southwest Spain. Economic Geology, 101: 865-881. https://doi.org/10.2113/gsecongeo.101.4.865
|
Roeder, P.L., Emslie, R.F., 1970. Olivine-Liquid Equilibrium. Contributions to Mineralogy and Petrology, 29: 275-289. https://doi.org/10.1007/BF00371276
|
Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, London, 1-352.
|
Ruan, B.X., Lü, X.B., Yu, Y.M., et al., 2020. Petrogenesis, Mineralization and Prospecting Information of Permian Mafic-Ultramafic Rocks, Beishan, Xinjiang. Earth Science, 45(12): 4481-4497 (in Chinese with English abstract).
|
Ruan, B. X., Yu, Y. M., Lü, X., et al., 2020. Sulfide Segregation Mechanism of Magmatic Ni Mineralization in Western Beishan Region, Xinjiang, NW China: Case Study of the Hongshishan Mafic-Ultramafic Complex. Ore Geology Reviews, 122: 103503. https://doi.org/10.1016/j.oregeorev.2020.103503
|
Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
|
Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 316: 412-417. https://doi.org/10.1126/science.1138113
|
Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434: 590-597. https://doi.org/10.1038/nature03411
|
Song, X.Y., Li, X.R., 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) Sulfide Deposit, NW China: Implications for the Formation of Magmatic Sulfide Mineralization in a Postcollisional Environment. Mineralium Deposita, 44: 303-327. https://doi.org/10.1007/s00126-008-0219-x
|
Song, X.Y., Xie, W., Deng, Y.F., et al., 2011. Slab Break-off and the Formation of Permian Mafic-Ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127: 128-143. https://doi.org/10.1016/j.lithos.2011.08.011
|
Song, X. Y., Yi, J. N., Chen, L. M., et al., 2016. The Giant Xiarihamu Ni-Co Sulfide Deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China. Economic Geology, 111(1): 29-55. https://doi.org/10.2113/econgeo.111.1.29
|
Su, B.X., Qin, K.Z., Tang, D.M., et al., 2013. Late Paleozoic Mafic-Ultramafic Intrusions in Southern Central Asian Orogenic Belt (NW China): Insight into Magmatic Ni-Cu Sulide Mineralization in Orogenic Setting. Ore Geology Reviews, 51: 57-73. https://doi.org/10.1016/j.oregeorev.2012.11.007
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Tang, D.M., Qin, K.Z., Xue, S.C., et al., 2017. Nature of Primitive Magmas of Early Permian Basalts in Tuha Basin, Xinjiang: Constraints from Melt Inclusions. Acta Petrologica Sinica, 33(2): 339-353 (in Chinese with English abstract).
|
Wang, C. Y., Zhou, M. F., Qi, L., 2007. Permian Flood Basalts and Mafic Intrusions in the Jinping (SW China)-Song Da (Northern Vietnam) District: Mantle Sources, Crustal Contamination and Sulfide Segregation. Chemical Geology, 243(3/4): 317-343. https://doi.org/10.1016/j.chemgeo.2007.05.017
|
Wang, X.C., Li, X.H., Li, W.X., et al., 2008. The Bikou Basalts in the Northwestern Yangtze Block, South China: Remnants of 820-810 Ma Continental Flood Basalts?. Geological Society of America Bulletin, 120: 1478-1492. https://doi.org/10.1130/B26310.1
|
Wei, X., Xu, Y. G., Feng, Y. X., et al., 2014. Plume-Lithosphere Interaction in the Generation of the Tarim Large Igneous Province, NW China: Geochronological and Geochemical Constraints. American Journal of Science, 314(1): 314-356. https://doi.org/10.2475/01.2014.09
|
Windley, B.F., Alexeiev, D., Xiao, W.J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of Geological Society, 164: 31-47. https://doi.org/10.1144/0016-76492006-022
|
Woodhead, J., Hellstrom, J., Hergt, J., et al., 2007. Isotopic and Elemental Imaging of Geological Materials by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Geostandards and Geoanalytical Research, 31: 331-343. https://doi.org/10.1111/j.1751-908X.2007.00104.x
|
Xiao, Q.H., 2010. Origin of Xiangshanxi Cu-Ni-Ti-Fe Composite Deposit in Eastern Tianshan, NW China, and Its Implications (Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 1-191 (in Chinese with English abstract).
|
Xiao, W.J., Windley, B.F., Allen, M.B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23: 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
|
Xiao, W.J., Zhang, L.C., Qin, K.Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304: 370-395. https://doi.org/10.2475/ajs.304.4.370
|
Xie, W., Song, X. Y., Chen, L. M., et al., 2014. Geochemistry Insights on the Genesis of the Subduction-Related Heishan Magmatic Ni-Cu-(PGE) Deposit, Gansu, Northwestern China, at the Southern Margin of the Central Asian Orogenic Belt. Economic Geology, 109(6): 1563-1583. https://doi.org/10.2113/econgeo.109.6.1563
|
Xie, W., Song, X. Y., Deng, Y. F., et al., 2012. Geochemistry and Petrogenetic Implications of a Late Devonian Mafic-Ultramafic Intrusion at the Southern Margin of the Central Asian Orogenic Belt. Lithos, 144/145: 209-230. https://doi.org/10.1016/j.lithos.2012.03.010
|
Xu, X.Y., Li, X.M., Ma, Z.P., et al., 2006a. LA-ICPMS Zircon U-Pb Dating of Gabbro from the Bayingou Ophiolite in the Northern Tianshan Mountains. Acta Geologica Sinica, 80(8): 1168-1176 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200608020&dbcode=CJFD&year=2006&dflag=pdfdown
|
Xu, X.Y., Xia, L.Q., Ma, Z.P., et al., 2006b. SHRIMP Zircon U-Pb Geochronology of the Plagiogranites from Bayingou Ophiolite in North Tianshan Mountains and the Petrogenesis of the Ophiolite. Acta Petrologica Sinica, 22(1): 83-94 (in Chinese with English abstract).
|
Yang, J.S., Xu, X.Z., Li, T.F., et al., 2011. U-Pb Ages of Zircons from Ophiolite and Related Rocks in the Kumishi Region at the Southern Margin of Middle Tianshan, Xinjiang: Evidence of Early Paleozoic Oceanic Basin. Acta Petrologica Sinica, 27(1): 77-95 (in Chinese with English abstract).
|
Yang, S. H., Maier, W. D., Hanski, E. J., et al., 2013. Origin of Ultra-Nickeliferous Olivine in the Kevitsa Ni-Cu-PGE-Mineralized Intrusion, Northern Finland. Contributions to Mineralogy and Petrology, 166(1): 81-95. https://doi.org/10.1007/s00410-013-0866-5
|
Yao, Z., Mungall, J. E., Jenkins, M. C., 2021. The Rustenburg Layered Suite Formed as a Stack of Mush with Transient Magma Chambers. Nat. Commun., 12(1): 505. https://doi.org/10.1038/s41467-020-20778-w
|
Zhang, Y., Wei, X., Xu, Y. G., et al., 2017. Sr-Nd-Pb Isotopic Compositions of the Lower Crust beneath Northern Tarim: Insights from Igneous Rocks in the Kuluketage Area, NW China. Mineralogy and Petrology, 111(2): 237-252. https://doi.org/10.1007/s00710-016-0470-2
|
Zhang, Z.B., 2016. Genetic Significance from Mineralogy of Xiarihamu Ni-Cu Sulfide Deposit, Eastern Kunlun Orogenic Belt (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Zhao, Y., 2016. Magmatic Sulfide Mineralization of the Cluster of Ni-Cu Deposits in the Eastern Tianshan and the Application of Cu Isotopes for Tracing Concealed Orebodies (Dissertation). China University of Geosciences, Beijing, 1-139 (in Chinese with English abstract).
|
Zhao, Y., Xue, C. J., Zhao, X. B., et al., 2015. Magmatic Cu-Ni Sulfide Mineralization of the Huangshannan Mafic-Untramafic Intrusion, Eastern Tianshan, China. Journal of Asian Earth Sciences, 105: 155-172. https://doi.org/10.1016/j.jseaes.2015.03.031
|
Zhao, Y., Xue, C. J., Zhao, X. B., et al., 2016. Origin of Anomalously Ni-Rich Parental Magmas and Genesis of the Huangshannan Ni-Cu Sulfide Deposit, Central Asian Orogenic Belt, Northwestern China. Ore Geology Reviews, 77: 57-71. https://doi.org/10.1016/j.oregeorev.2016.02.003
|
Zhu, W. G., Zhong, H., Li, X. H., et al., 2010. The Early Jurassic Mafic-Ultramafic Intrusion and A-Type Granite from Northeastern Guangdong, SE China: Age, Origin, and Tectonic Significance. Lithos, 119(3/4): 313-329. https://doi.org/10.1016/j.lithos.2010.07.005
|
鲍坚, 2019. Mg-Sr-Nd同位素组成对金川Cu-Ni-(PGE)硫化物矿床成因的制约(硕士学位论文). 兰州: 兰州大学, 1-61.
|
邓宇峰, 2011. 新疆北天山黄山东与黄山西镁铁-超镁铁岩体及Cu-Ni硫化物矿床成因(博士学位论文). 贵阳: 中国科学院地球化学研究所, 1-177.
|
邓宇峰, 宋谢炎, 颉炜, 等, 2021. 黄山-镜儿泉铜镍成矿带地层时代的厘定及其地质意义探讨. 地质学报, 95(2): 362-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102006.htm
|
方林茹, 唐冬梅, 秦克章, 等, 2019. 角闪石成分对东天山铜镍矿床岩浆过程的指示意义. 岩石学报, 35(7): 2061-2085. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201907008.htm
|
高剑峰, 陆建军, 赖鸣远, 等, 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), 39(6): 844-850. doi: 10.3321/j.issn:0469-5097.2003.06.014
|
康健, 陈列锰, 宋谢炎, 等, 2019. 金川超大型Ni-Cu-(PGE)矿床橄榄石微量元素特征及地质意义. 地球科学进展, 34(4): 382-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201904008.htm
|
李宁, 2020. 新疆东天山小白石头钨(钼)矿床成矿作用研究(博士学位论文). 北京: 中国地质科学院, 1-195.
|
毛亚晶, 秦克章, 唐冬梅, 2018. 高镍铜镍矿床的特征、形成机制与勘查展望. 岩石学报, 34(8): 2410-2424. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808014.htm
|
阮班晓, 吕新彪, 俞颖敏, 等, 2020. 新疆北山二叠纪镁铁-超镁铁质岩成因、成矿作用和找矿信息. 地球科学, 45(12): 4481-4497. doi: 10.3799/dqkx.2020.245
|
唐冬梅, 秦克章, 薛胜超, 等, 2017. 吐哈盆地早二叠世玄武岩原始岩浆性质: 来自熔融包裹体成分的制约. 岩石学报, 33(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702003.htm
|
肖庆华, 2010. 新疆东天山香山西铜镍-钛铁复合型矿床成因研究及意义(博士学位论文). 北京: 中国科学院地质与地球物理研究所, 1-191.
|
徐学义, 李向民, 马中平, 等, 2006a. 北天山巴音沟蛇绿岩形成于早石炭世: 来自辉长岩LA-ICPMS锆石U-Pb年龄的证据. 地质学报, 80(8): 1168-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200608020.htm
|
徐学义, 夏林圻, 马中平, 等, 2006b. 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究. 岩石学报, 22(1): 83-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601009.htm
|
杨经绥, 徐向珍, 李天福, 等, 2011. 新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年: 早古生代洋盆的证据. 岩石学报, 27(1): 77-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101006.htm
|
张志炳, 2016. 东昆仑夏日哈木铜镍硫化物矿床矿物成因意义探讨(硕士学位论文). 北京: 中国地质大学.
|
赵云, 2016. 东天山岩浆Cu-Ni矿集区成矿作用及Cu同位素示踪研究(博士学位论文). 北京: 中国地质大学, 1-139.
|
![]() |
![]() |