Citation: | Guo Minjie, Qian Jiahui, Yin Changqing, Zhang Jian, Lu Chengsen, 2021. Metamorphic Evolution and Tectonic Implications of Garnet Amphibolite from Yunzhongshan Terrane in Central North China Craton. Earth Science, 46(11): 3892-3909. doi: 10.3799/dqkx.2021.016 |
Brown, M., 2007. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193-234. https://doi.org/10.2747/0020-6814.49.3.193
|
Diener, J.F.A., Powell, R., 2012. Revised Activity-Composition Models for Clinopyroxene and Amphibole. Journal of Metamorphic Geology, 30(2): 131-142. https://doi.org/10.1111/j.1525-1314.2011.00959.x
|
Faure, M., Trap, P., Lin, W., et al., 2007. Polyorogenic Evolution of the Paleo-Proterozoic Trans-North China Belt: New Insights from the Lüliangshan-Hengshan-Wutaishan and Fuping Massifs. Episodes, 30(2): 96-107. https://doi.org/10.18814/epiiugs/2007/v30i2/004
|
Ferry, J.M., Waston, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154: 429-437. https://doi.org/10.1007/s00410-007-0201-0
|
Geng, Y.S., Yang, C.H., Wan, Y.S., 2006. Paleoproterozoic Granitic Magmatism in the Lüliang Area, North China Craton: Constraint from Isotopic Geochronology. Acta Petrologica Sinica, 22(2): 305-314 (in Chinese with English abstract). http://www.researchgate.net/publication/280020221_Paleoproterozoic_granitic_magmatism_in_the_Luliang_area_North_China_Craton_Constraint_from_isotopic_geochronology
|
Green, E.C.R., White, R.W., Diener, J.F.A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845-869. https://doi.org/10.1111/jmg.12211
|
Guiraud, M., Powell, R., Rebay, G., 2001. H2O in Metamorphism and Unexpected Behaviour in the Preservation of Metamorphic Mineral Assemblages. Journal of Metamorphic Geology, 19(4): 445-454. https://doi.org/10.1046/j.0263-4929.2001.00320.x
|
He, Q.C., 2019. Geological Evolution of Early Precambrian in Yunzhongshan Area: Studies of Petrography, Chronology and Geochemistry (Dissertation). Taiyuan University of Technology, Taiyuan (in Chinese with English abstract).
|
Holland, T.J.B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
|
Holland, T.J.B., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4): 492-501. https://doi.org/10.1007/s00410-003-0464-z
|
Holland, T.J.B., Powell, R., 2011. An Improved and Extended Internally-Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
|
Kang, J.L., Wang, H.C., Xiao, Z.B., et al., 2017. Neoarchean Crustal Accretion of the North China Craton: Evidence from the TTG Gneisses and Monzogranitic Gneisses in Yunzhong Mountain Area, Shanxi. Acta Petrologica Sinica, 33(9): 2881-2898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201709015.htm
|
Korhonen, F.J., Powell, R., Stout, J.H., 2012. Stability of Sapphirine+Quartz in the Oxidised Rocks of the Wilson Lake Terrane, Labrador: Calculated Equilibria in NCKFMASHTO. Journal of Metamorphic Geology, 30(1): 21-36. https://doi.org/10.1111/j.1525-1314.2011.00954.x
|
Kröner, A., Wilde, S.A., Zhao, G.C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China: Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1): 45-67. https://doi.org/10.1016/j.precamres.2006.01.008
|
Kusky, T.M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004
|
Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35: 219-246. https://doi.org/10.1180/minmag.1997.061.405.13
|
Liao, Y., Wei, C.J., 2019. Ultrahigh-Temperature Mafic Granulite in the Huai'an Complex, North China Craton: Evidence from Phase Equilibria Modelling and Amphibole Thermometers. Gondwana Research, 76: 62-76. https://doi.org/10.1016/j.gr.2019.05.010
|
Liu, C.H., Zhao, G.C., Liu, F.L., et al., 2020. Tectonic Switching of the Trans-North China Orogen in the Middle Paleoproterozoic: Insights from Mafic Magmatism in the Lüliang Complex. Tectonics, 39(11): 1-27. https://doi.org/10.1029/2020TC006253
|
Liu, P.H., Tian, Z.H., Wen, F., et al., 2020. Multiple High-Grade Metamorphic Events of the Jiaobei Terrane, North China Craton: New Evidences from Zircon U-Pb Ages and Trace Elements Compositions of Garnet Amphilbote and Granitic Leucosomes. Earth Science, 45(9): 3196-3216 (in Chinese with English abstract).
|
Liu, S.W., Li, Q.G., Zhang, L., 2009. Geology, Geochemistry of Metamorphic Volcanic Rock Suite in Precambrian Yejishan Group, Lüliang Mountains and Its Tectonic Implications. Acta Petrologica Sinica, 25(3): 547-560 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200903008.htm
|
Liu, S.W., Zhang, L.F., Li, Q.G., et al., 2012. Geochemistry and U-Pb Zircon Ages of Metamorphic Volcanic Rocks of the Paleoproterozoic Lüliang Complex and Constraints on the Evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173-190. https://doi.org/10.1016/j.precamres.2011.07.006
|
Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51: 537-571. https://doi.org/10.1093/petrology/egp082
|
Ludwig, K.R., 2012. Isoplot/Ex Version 4.15: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
|
Mi, G.Y., Mi, R., Mao, Y.D., 2018. The Age and Significance of Single-Grain Zircons in Jiehekou Gr. in the Yunzhong Mountain Area. Acta Mineralogica Sinica, 38(2): 176-184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201802006.htm
|
Qian, J.H., Wei, C.J., 2016. P-T-t Evolution of Garnet Amphibolites in the Wutai-Hengshan Area, North China Craton: Insights from Phase Equilibria and Geochronology. Journal of Metamorphic Geology, 34(5): 423-446. https://doi.org/10.1111/jmg.12186
|
Qian, J.H., Wei, C.J., Clarke, L.G., et al., 2015. Metamorphic Evolution and Zircon Ages of Garnet-Orthoamphibole Rocks in Southern Hengshan, North China Craton: Insights into the Regional Paleoproterozoic P-T-t History. Precambrian Research, 256: 223-240. https://doi.org/10.1016/j.precamres.2014.11.013
|
Qian, J.H., Wei, C.J., Yin, C.Q., 2017. Paleoproterozoic P-T-t Evolution in the Hengshan-Wutai-Fuping Area, North China Craton: Evidence from Petrological and Geochronological Data. Precambrian Research, 303: 91-104. https://doi.org/10.1016/j.precamres.2017.02.016
|
Qian, J.H., Wei, C.J., Zhou, X.W., et al., 2013. Metamorphic P-T Paths and New Zircon U-Pb Age Data for Garnet-Mica Schist from the Wutai Group, North China Craton. Precambrian Research, 233: 282-296. https://doi.org/10.1016/j.precamres.2013.05.012
|
Qian, J.H., Yin, C.Q., Li, S., et al., 2021. Metamorphic P-T-t Evolution of Amphibolite in the North Hengshan Terrane, North China Craton: Insights into the Late Paleoproterozoic Tectonic Processes from Initial Collision to Final Exhumation. Geological Society of America Bulletin. https://doi.org/10.1130/B35810.1
|
Qian, J.H., Yin, C.Q., Wei, C.J., et al., 2019. Two Phases of Paleoproterozoic Metamorphism in the Zhujiafang Ductile Shear Zone of the Hengshan Complex: Insights into the Tectonic Evolution of the North China Craton. Lithos, 330-331: 35-54. https://doi.org/10.1016/j.lithos.2019.02.001
|
Qian, J.H., Yin, C.Q., Zhang, J., et al., 2018. High-Pressure Granulites in the Fuping Complex of the Central North China Craton: Metamorphic P-T-t Evolution and Tectonic Implications. Journal of Asian Earth Sciences, 154: 255-270. https://doi.org/10.1016/j.jseaes.2017.12.027
|
Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. The Geological Society, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
Wan, Y.S., Song, B., Liu, D.Y., 2006. SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton: Evidence for a Major Late Palaeoproterozoic Tectonothermal Event. Precambrian Research, 149: 249-271. https://doi.org/10.1016/j.precamres.2006.06.006
|
Wang, H.C., Kang, J.L., Xiao, Z.B., et al., 2018. Neoarchean Subduction in North China Craton: New Evidence from the Metamorphic High-Mg Igneous Assemblage in Yunzhongshan Area, Shanxi Province. Acta Petrologica Sinica, 34(4): 1099-1118 (in Chinese with English abstract). http://www.researchgate.net/publication/330637181_Neoarchean_subduction_in_North_China_Craton_New_evidence_from_the_metamorphic_high-Mg_igneous_assemblage_in_Yunzhognshan_area_Shanxi_Province
|
Wang, H.C., Miao, P.S., Kang, J.L., et al., 2020. New Evidence for the Formation Age of the Lüliang Group. Acta Petrologica Sinica, 36(8): 2313-2330 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.08.03
|
Wang, H.Z., Zhang, H.F., Zhai, M.G., et al., 2016. Granulite Facies Metamorphism and Crust Melting in the Huai'an Terrane at ~1.95 Ga, North China Craton: New Constraints from Geology, Zircon U-Pb, Lu-Hf Isotope and Metamorphic Conditions of Granulites. Precambrian Research, 286: 126-151. https://doi.org/10.1016/j.precamres.2016.09.012
|
Wang, X., Zheng, Y.F., Zhu, W.B., 2019. Geochemical Evidence for Reworking of the Juvenile Crust in the Neoarchean for Felsic Magmatism in the Yunzhongshan Area, the North China Craton. Precambrian Research, 335: 105493. https://doi.org/10.1016/j.precamres.2019.105493.
|
Wang, X., Zhu, W.B., Liu, Y., et al., 2017. Revisiting the Yejishan Group of the Lüliang Complex, North China: Implications for a Paleoproterozoic Active Continental Marginal Basin in the Trans-North China Orogen. Precambrian Research, 292: 93-114. https://doi.org/10.1016/j.precamres.2017.02.002
|
Wei, C.J., 2016. Granulite Facies Metamorphism and Petrogenesis of Granite (Ⅱ): Quantitative Modeling of the HT-UHT Phase Equilibria for Metapelites and the Petrogenesis of S-Type Granite. Acta Petrologica Sinica, 32(6): 1625-1643 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201606004.htm
|
Wei, C.J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1): 24-43 (in Chinese with English abstract).
|
Wei, C.J., Duan, Z.Z., 2018. Phase Relations in Metabasic Rocks: Constraints from the Results of Experiments, Phase Modelling and ACF Analysis. Geological Society, London, Special Publications, 474: 25-45. https://doi.org/10.1144/SP474.10
|
Wei, C.J., Guan, X., Dong, J., 2017. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs. Acta Petrologica Sinica, 33(5): 1381-1404 (in Chinese with English abstract). http://www.researchgate.net/publication/317975280_HT-UHT_metamorphism_of_metabasites_and_the_petrogenesis_of_TTGs
|
Wei, C.J., Qian, J.H., Zhou, X.W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485-497. https://doi.org/10.1016/j.gsf.2014.02.008
|
White, R.W., Powell, R., Clarke, G.L., 2002. The Interpretation of Reaction Textures in Fe-Rich Metapelitic Granulites of the Musgrave Block, Central Australia: Constraints from Mineral Equilibria Calculations in the System K2O-FeO-MgO -Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 20(1): 41-55. https://doi.org/10.1046/j.0263-4929.2001.00349.x
|
White, R.W., Powell, R., Holland, T.J.B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5): 511-527. https://doi.org/10.1111/j.1525-1314.2007.00711.x
|
White, R.W., Powell, R., Holland, T.J.B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497-511. https://doi.org/10.1046/j.1525-1314.2000.00269.x
|
White, R.W., Powell, R., Holland, T.J.B., et al., 2014. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261-286. https://doi.org/10.1111/jmg.12071
|
Wu, C.M., 2018. Current Problems in Metamorphic Geology. Acta Petrologica Sinica, 34(4): 873-894 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201804004.htm
|
Wu, J.L., Zhang, H.F., Zhai, M.G., et al., 2017. Paleoproterozoic High-Pressure-High-Temperature Pelitic Granulites from Datong in the North China Craton and Their Geological Implications: Constraints from Petrology and Phase Equilibrium Modeling. Precambrian Research, 303: 727-748. https://doi.org/10.1016/j.precamres.2017.09.011
|
Wu, Y.B., Zheng, Y.F., 2004. Mineralogical Studies of Zircon Origin and Constraints on the Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
|
Xiao, L.L., Clarke, G., Liu, F.L., et al., 2017. Discovery of Mafic Granulite in the Guandishan Area of the Lüliang Complex, North China Craton: Age and Metamorphic Evolution. Precambrian Research, 303: 604-625. https://doi.org/10.1016/j.precamres.2017.08.020
|
Xiao, L.L., Clarke, G., Liu, F.L., et al., 2019. Metamorphic Records in the Lüliang Metapelites of the Jiehekou Group: Implications for the Tectonic Evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 332. https://doi.org/10.1016/j.precamres.2019.105415
|
Yang, C.H., Du, L.L., Song, H.X., et al., 2018. Stratigraphic Division and Correlation of the Paleoproterozoic Strata in the North China Craton: A Review. Acta Petrologica Sinica, 34(4): 1019-1057 (in Chinese with English abstract). http://www.researchgate.net/publication/330637994_Stratigraphic_division_and_correlation_of_the_Pleoproterozoic_strata_in_the_North_China_Craton_A_review
|
Yu, J.H., Wang, D.Z., Wang, C.Y., et al., 2004. Paleoproterozoic Granitic Magmatism and Metamorphism in Middle Part of Lüliang Range, Shanxi Province. Geological Journal of China Universities, 10(4): 500-513 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-gxdx200404002.htm
|
Zhai, M.G., Santosh, M., 2011. The Early Precambrian Odyssey of North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
|
Zhang, H.F., Wang, H.Z., Santosh, M., et al., 2016. Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC): Implications for Timing of Cratonization and Crustal Evolution History. Precambrian Research, 272: 244-263. https://doi.org/10.1016/j.precamres.2015.11.004.
|
Zhang, Y.H., Wei, C.J., Lu, M.J., et al., 2018. P-T-t Evolution of the High-Pressure Mafic Granulites from Northern Hengshan, North China Craton: Insights from Phase Equilibria and Geochronology. Precambrian Research, 312: 1-15. https://doi.org/10.1016/j.precamres.2018.04.022
|
Zhang, Y.H., Wei, C.J., Tian, W., et al., 2013. Reinterpretation of Metamorphic Age of the Hengshan Complex, North China Craton. Chinese Science Bulletin, 58(34): 4300-4307. doi: 10.1007/s11434-013-5993-x
|
Zhao, G.C., Cawood, P.A., Li, S.Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016
|
Zhao, G.C., Kröner, A., Wilde, S.A., et al., 2007. Lithotectonic Elements and Geological Events in the Hengshan-Wutai-Fuping Belt: A Synthesis and Implications for the Evolution of the Trans-North China Orogen. Geological Magazine, 144(5): 753-775. https://doi.org/10.1017/S0016756807003561
|
Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136: 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
|
Zhao, G.C., Wilde, S.A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Ages of Granitoid Rocks in the Lüliang Complex: Implications for the Accretion and Evolution of the Trans-North China Orogen. Precambrian Research, 160: 213-226. https://doi.org/10.1016/j.precamres.2007.07.004
|
Zhao, G.C., Yin, C.Q., Guo, J.H., et al., 2010. Metamorphism of the Lüliang Amphibolite: Implications for the Tectonic Evolution of the North China Craton. American Journal of Science, 310(10): 1480-1502. https://doi.org/10.2475/10.2010.10
|
Zhao, J., Gou, L.L., Zhang, C.L., et al., 2017. P-T-t Path and Tectonic Significance of Pelitic Migmatites from the Lüliang Complex in Xiyupi Area of Trans-North China Orogen, North China Craton. Precambrian Research, 303: 573-589. https://doi.org/10.1016/j.precamres.2017.07.010
|
Zhao, J., Zhang, C.L., Liu, X.Y., et al. 2020. Middle Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen, North China Craton: Constraint from the Intermediate-Acid Magmatism in the Lüliang Area. Lithos, 378-379: 105804. https://doi.org/10.1016/j.lithos.2020.105804S
|
Zhu, H.Z., Tian, Z.H., Wang, Z.L., et al., 2020. (Garnet Bearing) Plagioclase Amphibolite P-T Evolution Path and Its Geological Implications in Rushan Region, Sulu Tectonic Complex: Constraints by Petrology, Mineral Chemistry and Phase Equilibria Modeling. Earth Science, 45(9): 3420-3435 (in Chinese with English abstract).
|
耿元生, 杨崇辉, 万渝生, 2006. 吕梁地区古元古代花岗岩浆作用——来自同位素年代学的证据. 岩石学报, 22(2): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602005.htm
|
何晴州, 2019. 云中山地区早前寒武纪地质演化——岩相学、年代学及地球化学研究(硕士学位论文). 太原: 太原理工大学.
|
康健丽, 王惠初, 肖志斌, 等, 2017. 华北克拉通新太古代地壳增生: 来自山西云中山地区TTG片麻岩和二长花岗片麻岩的证据. 岩石学报, 33(9): 2881-2898. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709015.htm
|
刘平华, 田忠华, 文飞, 等, 2020. 华北克拉通胶北地体多期高级变质事件: 来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据. 地球科学, 45(9): 3196-3216. doi: 10.3799/dqkx.2020.228
|
刘树文, 李秋根, 张立, 2009. 吕梁山前寒武纪野鸡山群火山岩的地质学、地球化学及其构造意义. 岩石学报, 25(3): 547-560. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903008.htm
|
米广尧, 米然, 毛永栋, 2018. 云中山区界河口岩群单颗粒锆石年龄及地质意义. 矿物学报, 38(2): 176-184. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201802006.htm
|
王惠初, 康健丽, 肖志斌, 等, 2018. 华北克拉通新太古代板块俯冲作用: 来自山西云中山地区变质高镁火成岩组合的证据. 岩石学报, 34(4): 1099-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804015.htm
|
王惠初, 苗培森, 康健丽, 等, 2020. 吕梁群时代归属新证据. 岩石学报, 36(8): 2313-2330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202008004.htm
|
魏春景, 2016. 麻粒岩相变质作用与花岗岩成因Ⅱ: 变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟. 岩石学报, 32(6): 1625-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201606004.htm
|
魏春景, 2018. 华北中部造山带五台-恒山地区古元古代变质作用与构造演化. 地球科学, 43(1): 24-43. doi: 10.3969/j.issn.1672-6561.2018.01.005
|
魏春景, 关晓, 董杰, 2017. 基性岩高温-超高温变质作用与TTG质岩成因. 岩石学报, 33(5): 1381-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705002.htm
|
吴春明, 2018. 变质地质学研究中的一些困难问题. 岩石学报, 34(4): 873-894. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804004.htm
|
吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
|
杨崇辉, 杜利林, 宋会侠, 等, 2018. 华北克拉通古元古代地层划分与对比. 岩石学报, 34(4): 1019-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804012.htm
|
于津海, 王德滋, 王赐银, 等, 2004. 山西吕梁山中段元古代花岗质岩浆活动和变质作用. 高校地质学报, 10(4): 500-513. doi: 10.3969/j.issn.1006-7493.2004.04.003
|
朱浩忠, 田忠华, 王泽利, 等, 2020. 苏鲁构造杂岩带乳山地区(石榴)斜长角闪岩P-T演化轨迹及其地质意义——来自岩石学、矿物化学及相平衡模拟的约束. 地球科学, 45(9): 3420-3435. doi: 10.3799/dqkx.2020.244
|