Citation: | Luo Yipeng, Deng Yamin, Du Yao, Xue Jiangkai, Sun Xiaoliang, 2022. Occurrence and Formation of High Iodine Groundwater Inoxbows of the Middle Reach of the Yangtze River. Earth Science, 47(2): 662-673. doi: 10.3799/dqkx.2021.031 |
Allard, S., Von, G. U., Sahli, E., et al., 2009. Oxidation of Iodide and Iodine on Birnessite (δ-MnO2) in the pH Range 4~8. Water Research, 43: 3417-3426. https://doi.org/10.1016/j.watres.2009.05.018
|
Álvarez, F., Reich, M., Snyder, G., et al., 2016. Iodine Budget in Surface Waters from Atacama: Natural and Anthropogenic Iodine Sources Revealed by Halogen Geochemistry and Iodine-129 Isotopes. Applied Geochemistry, 68: 53-63. https://doi.org/10.1016/j.apgeochem.2016.03.011
|
Andersson, M., Karumbunathan, V., Zimmermann, M. B., 2012. Global Iodine Status in 2011 and Trends over the Past Decade. The Journal of Nutrition, 142: 744-750. https://doi.org/10.3945/jn.111.149393
|
Barikmo, I., Henjum, S., Dahl, L., et al., 2011. Environmental Implication of Iodine in Water, Milk and other Foods Used in Saharawi Refugees Camps in Tindouf, Algeria. Journal of Food Composition and Analysis, 24: 637-641. https://doi.org/10.1016/j.jfca.2010.10.003
|
Bridge, J. S., 2003. Rivers and Floodplains. Blackwell, Oxford, 504.
|
Burgess, W. G., Hoque, M. A., Michael, H. A., et al., 2010. Vulnerability of Deep Groundwater in the Bengal Aquifer System to Contamination by Arsenic. Nature Geoscience, 3: 83-87. https://doi.org/10.1038/ngeo750
|
Dai, J. L., 2004. Bioavailability of Iodine in Soil-Plant System(Dissertation). Shandong Agricultural University, Qingdao(in Chinese with English abstract).
|
Deng, Y. M., 2008. Geochemical Processes of High Arsenic Groundwater System at Western Hetao Basin(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Delange, F., de Benoist, B., Pretell, E., et al., 2001. Iodine Deficiency in the World: Where do We Stand at the Turn of the Century? Thyroid, 11: 437-447. https://doi.org/10.1089/105072501300176390
|
Donselaar, M. E., Bhatt, A. G., Ghosh, A. K., 2017. On the Relation between Fluvio-Deltaic Flood Basin Geomorphology and the Wide-Spread Occurrence of Arsenic Pollution in Shallow Aquifers. Science of the Total Environment, 574: 901-913. https://doi.org/10.1016/j.scitotenv.2016.09.074
|
Du, Y., Deng, Y. M., Ma, T., et al., 2018, Hydrogeochemical Evidences for Targeting Sources of Safe Groundwater Supply in Arsenic-Affected Multi-Level Aquifer Systems. Science of the Total Environment, 645: 1159-1171. https://doi.org/10.1016/j.scitotenv.2018.07.173
|
Duan, L., Wang, W., Sun, Y., et al., 2016. Iodine in Groundwater of the Guanzhong Basin, China: Sources and Hydrogeochemical Controls on Its Distribution. Environmental Earth Sciences, 75(11): 1-11. https://doi.org/10.1007/s12665-016-5781-4
|
Fuge, R., Johnson, C. C., 2015. Iodine and Human Health, the Role of Environmental Geochemistry and Diet, a Review. Applied Geochemistry, 63: 282-302. https://dx.doi.org/10.1016/j.apgeochem.2015.09.013
|
Gan, Y. Q., Zhao, K., Deng, Y. M., et al., 2018. Groundwater Flow and Hydrogeochemical Evolution in the Jianghan Plain, Central China. Hydrogeology Journal, 26: 1609-1623. https://doi.org/10.1007/s10040-018-1778-2
|
Ghosh, D., Kumar, S., Donselaar, M. E., 2020. Organic Carbon Transport Model of Abandoned River Channels: a Motif for Floodplain Geomorphology Influencing Biogeochemical Swaying of Arsenic. Science of the Total Environment, 762: 144400. https://doi.org/10.1016/j.scitotenv.2020.144400
|
Guo, X. X., 2014. Arsenic Mobilization and Transport in Shallow Aquifer Systems of Jianghan Plain(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Gu, Y. S., Guan, S., Ma, T., et al., 2018. Quaternary Sedimentary Environment Documented by Borehole Stratigraphical Records in Eastern Jianghan Basin. Earth Science, 43(11): 3989-4000(in Chinese with English abstract).
|
Guo, H. M., Li, Y., Zhao, K., et al., 2011. Removal of Arsenite by Synthetic Siderite: Behaviors and Mechanisms. Journal of Hazardous Materials, 186: 1847-1854. https://doi.org/10.1016/j.jhazmat.2010.12.078
|
Guo, H. P., Zhang, Z. C., Cheng, G. M., et al., 2015. Groundwater-Derived Land Subsidence in the North China Plain. Environmental Earth Sciences, 74: 1415-1427. https://doi.org/10.1007/s12665-015-4131-2
|
Johnson, C.C., 2003. The Geochemistry of Iodine and Its Application to Environmental Strategies for Reducing the Risk from Iodine Deficiency Disorders, Report CR/03/057N. British Geological Survey, London.
|
Jolliffe, I.T., 2002. Principal Component Analysis. 2nd Edition. Springer-Verlag, New York.
|
Kaiser, H.F., 1960. The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement, 20: 141-151. https://doi.org/10.1177/001316446002000116
|
Kaplan, D. I., Denham, M. E., Zhang, S. J., et al., 2014. Radioiodine Biogeochemistry and Prevalence in Groundwater. Critical Reviews in Environmental Science and Technology, 44: 2287-2335. https://doi.org/10.1080/10643389.2013.828273
|
Koh, D. C., Mayer, B., Lee, K. S., et al., 2010. Land-Use Controls on Sources and Fate of Nitrate in Shallow Groundwater of an Agricultural Area Revealed by Multiple Environmental Tracers. Journal of Contaminant Hydrology, 118 (1-2): 62-78. https://doi.org/10.1016/j.jconhyd.2010.08.003
|
Li, J. X., 2014. Geochemistry of High Iodine Groundwater System of Datong Basin, Northern China(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Lu, Z.J., Deng, Y.M., Du, Y., et al., 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782(inChinese with English abstract).
|
Li, J. X., Wang, Y. X., Guo, W., et al., 2014. Iodine Mobilization in Groundwater System at Datong Basin, China: Evidence from Hydrochemistry and Fluorescence Characteristics. Science of the Total Environment, 468-469: 738-745. https://doi.org/10.1016/j.scitotenv.2013.08.092
|
Li, J. X., Wang, Y. X., Xie, X. J., et al., 2013. Hydrogeochemistry of High Iodine Groundwater: a Case Study at the Datong Basin, Northern China. Environmental Science Processes Impact, 15: 848-859. https://doi.org/10.1039/c3em30841c
|
Lind, P., Langsteger, W., Molner, M., et al., 1998. Epidemiology Thyroid Diseases in Iodine Sufficiency. Thyroid, 8(12): 1179-1183. https://doi.org/10.1089/thy.1998.8.1179
|
McArthur, J. M., Sikdar, P. K., Hoque, M. A., et al., 2012, Waste-Water Impacts on Groundwater: Cl/Br Ratios and Implications for Arsenic Pollution in the Bengal Basin and Red River Basin, Vietnam. Science of the Total Environment, 437: 390-402. https://doi.org/10.1016/j.scitotenv.2012.07.068
|
Nath, B., Sahu, S. J., Jana, J., et al., 2008. Hydrochemistry of Arsenic-Enriched Aquifer from Rural West Bengal, India: A Study of Arsenic Exposure and Mitigation Option. Water Air and Soil Pollution, 190(1/4): 95-113. https://doi.org/10.1007/s11270-007-9583-x
|
Otosaka, S., Schwehr, K. A., Kaplan, D. I., et al., 2011. Factors Controlling Mobility of 127I and 129I Species in an Acidic Groundwater Plume at the Savannah River Site. Science of the Total Environment, 409: 3857-3865. https://doi.org/10.1016/j.scitotenv.2011.05.018
|
Roti, E., Uberti, E. D., 2001. Iodine Excess and Hyperthyroidism. Thyroid, 11: 493-500. https://doi.org/10.1089/105072501300176453
|
Seigo, A., Mizuyo, K., Satoshi, H., et al., 2003. Microbial Participation in Iodine Volatilization from Soils. Environmental Science Technology, 37: 3885-90. https://doi.org/10.1021/es0210751
|
Steinberg, S. M., Schmett, G. T., Kimble, G., et al., 2008. Immobilization of Fission Iodine by Reaction with INsoluble Natural Organic Matter. Journal of Radioanalytical and Nuclear Chemistry, 277: 175-183. https://doi.org/10.1007/s10967-008-0727-2
|
Sun, Y., Zhou, J. L., Liang, X., et al., 2020. Distribution and Genesis of Shallow High-Iodine Groundwater Insouthern Margin of the Tarim Basin: A Case Study of Plain Area in Minfeng County, Xinjiang. Earth Science(in Chinese with English abstract).
|
Tang, Q. F., Xu, Q., Zhang, F. C., et al., 2013. Geochemistry of Iodine-Rich Groundwater in the Taiyuan Basin of Central Shanxi Province, North China. Journal of Geochemical Exploration, 135: 117-123. https://doi.org/10.1016/j.gexplo.2012.08.019
|
Togo, Y. S., Takahashi, Y., Amano, Y., et al., 2016. Age and Speciation of Iodine in Groundwater and Mudstones of the Horonobe Area, Hokkaido, Japan: Implications for the Origin and Migration of Iodine during Basin Evolution. Geochimica et Cosmochimica Acta, 191: 165-186. https://doi.org/10.1016/j.gca.2016.07.012
|
Voutchkova, D. D., Ernstsen, V., Kristiansen, S. M., et al., 2017. Iodine in Major Danish Aquifers. Environmental Earth Sciences, 76: 447. https://doi.org/10.1007/s12665-017-6775-6
|
Wang, A. M., 2016. Response of Sediments of Oxbows in the Middle Reaches of the Yangtze River to Human Activities in Recent 100 Years(Dissertation). Shanghai Normal University, Shanghai(in Chinese with English abstract).
|
Whitehead, D.C., 1984. The Distribution and Transformations of Iodine in the Environment. Environment International, 10: 321-339. https://doi.org/10.1016/0160-4120(84)90139-9
|
Wang, L. X., Liang, X., Li, J., 2020. Analysis of Origin of Groundwater in Jianghan Plain Based on Typical Drillings. Earth Science, 45(2): 701-710(in Chinese with English abstract).
|
Xue, X. B., Li, J. X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921 (in Chinese with English abstract).
|
Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of the Total Environment, 686: 50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391
|
Xu, F., Ma, T., Shi, L., et al., 2012. Hydrogeochemical Characteristics of High Iodine Groundwater in Hetao Plain, Inner Mongolia. Hydrogeology & Engineering Geology, 39(5): 809-815(inChinese).
|
Xu, C., Zhong, J. Y., Patrick, G., et al., 2012, Molecular Environment of Stable Iodine and Radioiodine (129I) in Natural Organic Matter: Evidence Inferred from NMR and Binding Experiments at Environmentally Relevant Concentrations. Geochimica et Cosmochimica Acta, 97: 166-182. https://doi.org/10.1016/j.gca.2012.08.030
|
Zimmermann, M. B., 2009. Iodine Deficiency. Endocrine Reviews, 30: 376-408. https://doi.org/10.1210/er.2009-0011
|
Zhang, E. Y., Wang, Y. Y., Qian, Y., et al., 2013. Iodine in Groundwater of the North China Plain: Spatial Patterns and Hydrogeochemical Processes of Enrichment. Journal of Geochemical Exploration, 135: 40-53. https://doi.org/10.1016/j.gexplo.2012.11.016
|
Zhang, S. J., Xu, C., Creeley, D., 2013. Iodine-129 and Iodine-127 Speciation in Groundwater at the Hanford Site, U.S. : Iodate Incorporation into Calcite. Environmental Science Technology, 47: 9635-9642. https://doi.org/10.1021/es401816e
|
Zhou, Y., Wang, Y. X., Li, Y. L., et al., 2013. Hydrogeochemical Characteristics of Central Jianghan Plain, China. Environmental Earth Sciences, 68: 765-778. https://doi.org/10.1007/s12665-012-1778-9
|
Zhang, E. Y., Zhang, F. C., Qian, Y., et al., 2010. Distribution Characteristics and Enlightenment of High Iodine Groundwater in Typical Areas of China. Geology in China, 37(3): 797-802(inChinese).
|
戴九兰, 2004. 碘在土壤-植物系统中的生物有效性(博士学位论文). 青岛: 山东农业大学.
|
邓娅敏, 2008. 河套盆地西部高砷地下水系统中的地球化学过程研究(博士学位论文). 武汉: 中国地质大学.
|
郭欣欣, 2014. 江汉平原浅层含水层系统中砷释放与迁移过程研究(博士学位论文). 武汉: 中国地质大学.
|
顾延生, 管硕, 马腾, 等, 2018. 江汉盆地东部第四纪钻孔地层与沉积环境. 地球科学, 43(11): 3989-4000. doi: 10.3799/dqkx.2018.324
|
李俊霞, 2014. 大同盆地高碘地下水系统地球化学研究(博士学位论文). 武汉: 中国地质大学.
|
鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
|
孙英, 周金龙, 梁杏, 等, 2020. 塔里木盆地南缘浅层高碘地下水的分布及成因: 以新疆民丰县平原区为例. 地球科学.
|
王阿敏, 2016. 近百年来长江中游牛轭湖沉积对人类活动的响应(硕士学位论文). 上海: 上海师范大学.
|
王露霞, 梁杏, 李静, 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710. doi: 10.3799/dqkx.2018.363
|
徐芬, 马腾, 石柳, 等, 2012. 内蒙古河套平原高碘地下水的水文地球化学特征. 水文地质工程地质, 39(5): 809-815. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201205001.htm
|
薛肖斌, 李俊霞, 钱坤, 等, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
|
张二勇, 张福存, 钱永, 等, 2010. 中国典型地区高碘地下水分布特征及启示. 中国地质, 37(3): 797-802. doi: 10.3969/j.issn.1000-3657.2010.03.036
|