• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 11
    Nov.  2021
    Turn off MathJax
    Article Contents
    Liu Minghui, Shi Yu, Tang Yuanlan, Zhao Zengxia, Liu Xijun, Gao Aiyang, Huang Chunwen, 2021. Petrogenesis and Tectonic Significance of Caledonian Ⅰ-Type Granitoids in Southeast Guangxi, South China. Earth Science, 46(11): 3965-3992. doi: 10.3799/dqkx.2021.035
    Citation: Liu Minghui, Shi Yu, Tang Yuanlan, Zhao Zengxia, Liu Xijun, Gao Aiyang, Huang Chunwen, 2021. Petrogenesis and Tectonic Significance of Caledonian Ⅰ-Type Granitoids in Southeast Guangxi, South China. Earth Science, 46(11): 3965-3992. doi: 10.3799/dqkx.2021.035

    Petrogenesis and Tectonic Significance of Caledonian Ⅰ-Type Granitoids in Southeast Guangxi, South China

    doi: 10.3799/dqkx.2021.035
    • Received Date: 2021-02-09
      Available Online: 2021-12-04
    • Publish Date: 2021-11-30
    • The Longxin and Xiaying plutons are located in the southwest of the Yangtze and Cathaysia blocks collision belt, studying the petrogenesis of the Ⅰ-type granitoids is of great geological significance to reveal the geodynamic background and tectonic evolution of the Early Paleozoic in Southeast Guangxi. LA-ICP-MS zircon U-Pb dating, geochemical and Lu-Hf isotopic data are reported for the host rock and its mafic microgranular enclave (MME) of Longxin and Xiaying plutons. Zircon U-Pb dating results of samples from the Longxin and Xiaying plutons show that the age of the host rock (granodiorite) of the Longxin pluton is 440±2 Ma, and that of the MME (diorite) of the Longxin pluton is 441±1 Ma, showing that the host rock and the MMEs are the products of the simultaneous magmatism. The age of the granodiorite and monzogranite of Xiaying pluton are 447±3 Ma and 436±3 Ma, indicating that there were at least two stages of intrusion in the Xiaying pluton. Both the host rocks (granodiorite) and MME (diorite) of the Longxin pluton have negative εHf(t) values (-3.32 to -5.83 and -17.89 to -1.82), and the corresponding two-stage model ages (TDM2) are 1.62-1.76 Ga and 1.57-2.54 Ga, respectively. The zircon εHf(t) values of the granodiorite (early stage) and monzogranite (late stage) of the Xiaying pluton are -15.43 to 3.03 and -4.79 to 6.82, respectively, with the TDM2 model ages of 1.59-1.99 Ga and 0.97-1.70 Ga, respectively, indicating that the parental magma of the granitic rocks might have originated mainly from crustal materials of the Paleoproterozoic-Mesoproterozoic. Geochemical data exhibit that the host rocks of the Longxin pluton are peraluminous high-K calc-alkaline Ⅰ-type granite, with relatively high light rare earth elements (LREE) and large ion lithophile elements (LILE), with low high field strength elements (HFSE) and heavy rare earth elements (HREE). For the Xiaying pluton, the granodiorite (early stage) is weakly peraluminous high-K calc-alkaline Ⅰ-type granite, while the monzogranite (late stage) is peraluminous high-K calc-alkaline Ⅰ-type granite, which is similar to the host rocks of the Longxin pluton. According to the petrography, geochronology, geochemistry and Hf isotopic composition characteristics of granites and mafic inclusions in the study area, indicating the MME (diorite) of Longxin formed by the magma mingling and mixing, although the host rock (granodiorite) of the Longxin and Xiaying plutons (granodiorite and monzogranite) have similar sources and petrogenesis, which have differences in magma mixing and fractional crystallization in the formation of granites. Based on previous studies on the tectonic setting in South China, it is suggested that the Longxin and Xiaying plutons were formed by the extension and thinning of the lithosphere, upwelling and underplating of the hot mantle-derived magma after the intra-continental orogeny of the Yangtze and Cathaysia blocks. The lower crust was partially melted under the influence of mantle heat and formed the acid magma, and then mixed with the mafic magma for limited and uneven degrees of crust-mantle mixing in the source region.

       

    • loading
    • Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1/2/3): 51-73. https://doi.org/10.1016/S0024-4937(99)00052-3
      Anderson, D. L., 2005. Large Igneous Provinces, Delamination, and Fertile Mantle. Elements, 1(5): 271-275. https://doi.org/10.2113/gselements.1.5.271
      Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1/2/3/4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
      Barth, M. G., McDonough, W. F., Rudnick, R. L., 2000. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165(3/4): 197-213. https://doi.org/10.1016/S0009-2541(99)00173-4
      Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1/2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
      Bouvier, A., Vervoort, J. D., Patchett, P. J, 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
      Castro, A., Gerya, T., García-Casco, A., et al., 2010. Melting Relations of MORB-Sediment Mélanges in Underplated Mantle Wedge Plumes: Implications for the Origin of Cordilleran-Type Batholiths. Journal of Petrology, 51(6): 1267-1295. https://doi.org/10.1093/petrology/egq019
      Cawthorn, R. G., Strong, D. F., Brown, P. A., 1976. Origin of Corundum-Normative Intrusive and Extrusive Magmas. Nature, 259(5539): 102-104. https://doi.org/10.1038/259102a0
      Chappell, B. W., 1996. Magma Mixing and the Production of Compositional Variation within Granite Suites: Evidence from the Granites of Southeastern Australia. Journal of Petrology, 37(3): 449-470. https://doi.org/10.1093/petrology/37.3.449
      Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174.
      Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83: 1-26. https://doi.org/10.1017/S0263593300007720
      Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111
      Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. https://doi.org/10.1016/j.gca.2004.09.019
      Chen, M.H., Li, Z.Y., Li, Q., et al., 2015. A Preliminary Study of Multi-Stage Granitoids and Related Metallogenic Series in Dayaoshan Area of Guangxi, China. Earth Science Frontiers, 22(2): 41-53 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY201502005.htm
      Chen, X., Rong, J.Y., Rowley, D., et al., 1995. Is the Early Paleozoic Banxi Ocean in South China Necessary?. Geological Review, 41(5): 389-400 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-review_thesis/0201253284157.html
      Chen, X., Zhang, Y. D., Fan, J. X., et al., 2010. Ordovician Graptolite-Bearing Strata in Southern Jiangxi with a Special Reference to the Kwangsian Orogeny. Science in China (Series D: Earth Sciences), 40(12): 1621-1631 (in Chinese). http://engine.scichina.com/downloadPdf/YQzQFapt97qgHgxjc
      Clemens, J. D., Wall, V. J., 1988. Controls on the Mineralogy of S-Type Volcanic and Plutonic Rocks. Lithos, 21(1): 53-66. https://doi.org/10.1016/0024-4937(88)90005-9
      Dang, Y., Chen, M. H., Fu, B., et al., 2018. Petrogenesis of the Yupo W-Bearing and Dali Mo-Bearing Granitoids in the Dayaoshan Area, South China: Constraints of Geochronology and Geochemistry. Ore Geology Reviews, 92: 643-655. https://doi.org/10.1016/j.oregeorev.2017.10.022
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      de Souza, Z. S., Martin, H., Peucat, J. J., et al., 2007. Calc-Alkaline Magmatism at the Archean-Proterozoic Transition: The Caicó Complex Basement (NE Brazil). Journal of Petrology, 48(11): 2149-2185. https://doi.org/10.1093/petrology/egm055
      Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Syn- and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Research, 20(2/3): 568-581. https://doi.org/10.1016/j.gr.2011.01.013
      Ewart, A., Griffin, W. L., 1994. Application of Proton-Microprobe Data to Trace-Element Partitioning in Volcanic Rocks. Chemical Geology, 117(1/2/3/4): 251-284. https://doi.org/10.1016/0009-2541(94)90131-7
      Franzini, M., Leoni, L., Saitta, M., 1972. A Simple Method to Evaluate the Matrix Effects in X-Ray Fluorescence Analysis. X-Ray Spectrometry, 1(4): 151-154. https://doi.org/10.1002/xrs.1300010406
      Gao, J. F., Ling, H.F., Shen, W.Z., et al., 2005. Geochemistry and Petrogenesis of Lianyang Granite Composite, West Guangdong Province. Acta Petrologica Sinica, 21(6): 1645-1656 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200506014.htm
      Gao, J.F., Lu, J.J., Lai, M.Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. Journal of Nanjing University (Natural Sciences), 39(6): 844-850 (in Chinese with English abstract). http://www.researchgate.net/publication/284756747_Analysis_of_trace_elements_in_rock_samples_using_HR-ICPMS
      Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. https://doi.org/10.1016/S0024-4937(02)00082-8
      Guan, Y.L., Yuan, C., Long, X.P., et al., 2016. Genesis of Mafic Enclaves from Early Paleozoic Granites in the South China Block: Evidence from Petrology, Geochemistry and Zircon U-Pb Geochronology. Geotectonica et Metallogenia, 40(1): 109-124 (in Chinese with English abstract). http://www.researchgate.net/publication/316278456_Genesis_of_mafic_enclaves_from_early_Paleozoic_granites_in_the_south_china_block_evidence_from_petrology_geochemistry_and_zircon_U-Pb_geochronology
      Hibbard, M. J., 1991. Textural Anatomy of Twelve Magma-Mixed Granitoid Systems. In: Didier, J., Barbarin, B., eds., Enclaves and Granite Petrology. Developments in Petrology. Elsevier, Amsterdam, 431-444.
      Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821X(88)90132-X
      Hsü, K. J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1/2/3/4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-C
      Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      Jia, X. H., Wang, X. D., Yang, W. Q., 2017. Petrogenesis and Geodynamic Implications of the Early Paleozoic Potassic and Ultrapotassic Rocks in the South China Block. Journal of Asian Earth Sciences, 135: 80-94. https://doi.org/10.1016/j.jseaes.2016.12.013
      Jiang, X. Z., Kang, Z. Q., Xu, J. F., et al., 2017. Early Paleozoic Granodioritic Plutons in the Shedong W-Mo Ore District, Guangxi, Southern China: Products of Re-Melting of Middle Proterozoic Crust Due to Magma Underplating. Journal of Asian Earth Sciences, 141(15): 59-73. https://doi.org/10.1016/j.jseaes.2016.11.004
      Jung, S., Hoernes, S., Mezger, K., 2002. Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia). Contributions to Mineralogy and Petrology, 143(5): 551-566. https://doi.org/10.1007/s00410-002-0366-5
      Kocak, K., Zedef, V., Kansun, G., 2011. Magma Mixing/Mingling in the Eocene Horoz (Nigde) Granitoids, Central Southern Turkey: Evidence from Mafic Microgranular Enclaves. Mineralogy and Petrology, 103(1/2/3/4): 149-167. https://doi.org/10.1007/s00710-011-0165-7
      Kong, J. J., Niu, Y. L., Duan, M., et al., 2017. Petrogenesis of Luchuba and Wuchaba Granitoids in Western Qinling: Geochronological and Geochemical Evidence. Mineralogy and Petrology, 111(6): 887-908. https://doi.org/10.1007/s00710-017-0501-7
      Kumar, S., Rino, V., 2006. Mineralogy and Geochemistry of Microgranular Enclaves in Palaeoproterozoic Malanjkhand Granitoids, Central India: Evidence of Magma Mixing, Mingling, and Chemical Equilibration. Contributions to Mineralogy and Petrology, 152(5): 591-609. https://doi.org/10.1007/s00410-006-0122-3
      Laurent, A., Janoušek, V., Magna, T., et al., 2014. Petrogenesis and Geochronology of a Post-Orogenic Calc-Alkaline Magmatic Association: The Žulová Pluton, Bohemian Massif. Journal of Geosciences, 59(4): 415-440. https://doi.org/10.3190/jgeosci.176
      Li, W., Bi, S.J., Yang, Z., et al., 2015. Zircon U-Pb Age and Hf Isotope Characterization of Sheshan Granodiorite in Southern Edge of Dayaoshan, Guidong: Constraints on Caledonian Diagenesis and Mineralization. Earth Science, 40(1): 17-33 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201501002
      Li, W. X., Li, X. H., Li, Z. X., 2005. Neoproterozoic Bimodal Magmatism in the Cathaysia Block of South China and Its Tectonic Significance. Precambrian Research, 136(1): 51-66. https://doi.org/10.1016/j.precamres.2004.09.008
      Li, Y.J., Zhao, R.F., Li, Z.C., et al., 2003. Origin Discrimination of Granitoids Formed by Mingled Magma: Using a Trace Element Diagram and Examplified by Wenquan Granites, Western Qinling. Journal of Chang'an University (Earth Science Edition), 25(3): 7-11, 15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200303002.htm
      Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1
      Liu, B. J., Xu, X. S., 1994. Lithofacies and Paleogeography Atlas of Southern China. Science Press, Beijing, 1-188 (in Chinese).
      Liu, X., Wang, Q., Ma, L., et al., 2020. Early Paleozoic Intracontinental Granites in the Guangzhou Region of South China: Partial Melting of a Metasediment-Dominated Crustal Source. Lithos, 376/377: 105763. https://doi.org/10.1016/j.lithos.2020.105763
      Liu, Z., Jiang, Y. H., Jia, R. Y., et al., 2015. Origin of Late Triassic High-K Calc-Alkaline Granitoids and Their Potassic Microgranular Enclaves from the Western Tibet Plateau, Northwest China: Implications for Paleo-Tethys Evolution. Gondwana Research, 27(1): 326-341. https://doi.org/10.1016/j.gr.2013.09.022
      Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America, Abstracts with Programs, 11: 468. http://ci.nii.ac.jp/naid/10019593683
      Ma, C. Q., Yang, K. G., Tang, Z. H., et al., 1994. Magma-Dynamics Granitoids: Theory, Methods and a Case Study of the Eastern Hubei Granitoids. China University of Geosciences Press, Wuhan (in Chinese).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Miller, C. F., 1985. Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources?. The Journal of Geology, 93(6): 673-689. https://doi.org/10.1086/628995
      Morris, R. A., DeBari, S. M., Busby, C., et al., 2019. Building Arc Crust: Plutonic to Volcanic Connections in an Extensional Oceanic Arc, the Southern Alisitos Arc, Baja California. Journal of Petrology, 60(6): 1195-1228. https://doi.org/10.1093/petrology/egz029
      Nong, J.N., Huang, X.Q., Guo, S.Y., et al., 2017a. Discovery of Caledonoan Basic Rocks in Dayaoshan Region, Eastern Guangxi and Its Geological Significance. Geological Science and Technology Information, 36(6): 113-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201706013.htm
      Nong, J.N., Zou, Y., Qiu, E.L., et al., 2017b. Petrogenesis of Dacun and Gulong Plutons in Southeast Guangxi: Constraints from Geochemistry, Zircon U-Pb Ages and Hf Isotope. Geological Bulletin of China, 36(Z1): 224-237(in Chinese with English abstract). http://www.researchgate.net/publication/317984262_Petrogenesis_of_Dacun_and_Gulong_plutons_in_southeast_Guangxi_Constraints_from_geochemistry_zircon_U-Pb_ages_and_Hf_isotope
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Peng, S.B., Jin, Z.M., Fu, J.M., et al., 2006a. Geochemical Characteristics of Basic Intrusive Rocks in the Yunkai Uplift, Guangdong-Guangxi, China, and Their Tectonic Significance. Geological Bulletin of China, 25(4): 434-441 (in Chinese with English abstract). http://www.researchgate.net/publication/285008546_Geochemical_characteristics_of_basic_intrusive_rocks_in_the_Yunkai_uplift_Guangdong-Guangxi_China_and_their_tectonic_significance
      Peng, S.B., Jin, Z.M., Fu, J.M., et al., 2006b. The Geochemical Evidences and Tectonic Significance of Neoproterozoic Ophiolite in Yunkai Area, Western Guangdong Province, China. Acta Geologica Sinica, 80(6): 814-825 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200606004&dbcode=CJFD&year=2006&dflag=pdfdown
      Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016a. Early Paleozoic Subduction in Cathaysia(Ⅰ): New Evidence from Nuodong Ophiolite. Earth Science, 41(5): 765-778 (in Chinese with English abstract).
      Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016b. Early Paleozoic Subduction in Cathaysia(Ⅱ): New Evidence from the Dashuang High Magnesian-Magnesian Andesite. Earth Science, 41(6): 931-947 (in Chinese with English abstract).
      Pitcher, W. S., 1993. The Nature and Origin of Granite. Glasgow, Blackie, 316.
      Qin, X.F., Wang, Z.Q., Gong, J.H., et al., 2017. The Confirmation of Caledonian Intermediate-Mafic Volcanic Rocks in Northern Margin of Yunkai Block: Evidence for Early Paleozoic Paleo-Ocean Basin in Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Petrologica Sinica, 33(3): 791-809 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201703010.htm
      Qin, X. F., Wang, Z. Q., Hu, G. A., et al., 2013. Geochronology and Geochemistry of Hudong Gneissic Composite Pluton in the Junction of Guangdong and Guangxi Provinces: Implications for Early Paleozoic Tectono-Magmatism along the Northern Margin of Yunkai Massif. Acta Petrologica Sinica, 29(9): 3115-3130 (in Chinese with English abstract). http://www.researchgate.net/publication/287605587_Geochronologv_and_geochemistry_of_hudong_gneissic_composite_pluton_in_the_junction_of_guangdong_and_guangxi_provinces_Implications_for_early_paleozoic_tectono-magmatism_along_the_northern_margin_of_yu
      Shao, F. L., Niu, Y. L., Liu, Y., et al., 2017. Petrogenesis of Triassic Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau and Their Tectonic Implications. Lithos, 282/283: 33-44. https://doi.org/10.1016/j.lithos.2017.03.002
      Shu, L.S., 2006. Predevonian Tectonic Evolution of South China: From Cathaysian Block to Caledonian Period Folded Orogenic Belt. Geological Journal of China Universities, 12(4): 418-431 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=GXDX200604002&dbcode=CJFD&year=2006&dflag=pdfdown
      Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). http://www.cqvip.com/QK/95894A/201207/42680096.html
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29-44. https://doi.org/10.1016/S0024-4937(98)00024-3
      Vernon, R. H., Etheridge, M. A., Wall, V. J., 1988. Shape and Microstructure of Microgranitoid Enclaves: Indicators of Magma Mingling and Flow. Lithos, 22(1): 1-11. https://doi.org/10.1016/0024-4937(88)90024-2
      Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1/2/3/4): 141-158. https://doi.org/10.1016/S0301-9268(02)00209-7
      Wang, J., Mou, C. L., 2001. Neoproterozoic Rifting History of South China. Gondwana Research, 4(4): 813-814. https://doi.org/10.1016/S1342-937X(05)70600-6
      Wang, L., 2014. Chronology, Petrology, Geochemistry and Petrogenesis of Daning Granitic Pluton and Its Mafic Enclaves, Northeast Guangxi (Dissertation). Chinese Academy of Geological Sciences, Beijing, 1-87 (in Chinese with English abstract).
      Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3): 263-286. https://doi.org/10.2747/0020-6814.45.3.263
      Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013a. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2013b. Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block: Geochronological and Geochemical Evidence. Lithos, 160/161: 37-54. https://doi.org/10.1016/j.lithos.2012.11.004
      Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1/2): 239-260. https://doi.org/10.1016/j.lithos.2011.07.027
      Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010TC002750
      Wei, C. X., 2016. Petrogenesis and Tectonic Geological Setting of Caledonian Granitoids in Northeast Guangxi (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wilson, M., 1993. Magmatic Differentiation. Journal of the Geological Society, 150(4): 611-624. https://doi.org/10.1144/gsjgs.150.4.0611
      Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671
      Wu, J.C., Kang, Z.Q., Feng, Z.H., et al., 2015. Geochronology and Geochemistry of Dacun Granitic Pluton in Dayaoshan Uplift Area, Guangxi. Journal of Guilin University of Technology, 35(4): 747-755 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX201504012.htm
      Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/BF03184122
      Xiao, Q. H., Deng, J. F., Ma, D. S., et al., 2002. The Ways Investigation on Granitoids. Science Press, Beijing, 1-294 (in Chinese).
      Xiong, S.Q., Kang, Z.Q., Feng, Z.H., et al., 2015. Zircon U-Pb Age and Geochemistry of Dajin Granitic Pluton in Dayaoshan Area, Guangxi. Journal of Guilin University of Technology, 35(4): 736-746 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-guilin-university-technology_thesis/020128497339.html
      Xu, H., Huang, B.C., Ni, Z.X., et al., 2012. Petrography, Geochemistry and Chronology of Gulong Granite Stock Group in West Segment of Qinzhou-Hangcheng Metallogenic Belt. Geology and Mineral Resources of South China, 28(4): 331-339 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201204006.htm
      Xu, H., Ni, Z.X., Huang, B.C., et al., 2016. Determination of Early Paleozoic TTG Intrusive Rocks at the Southeast Edge of Dayao Mountain, Guangxi. Geology in China, 43(3): 780-796 (in Chinese with English abstract). http://www.researchgate.net/publication/308371873_Determination_of_Early_Paleozoic_TTG_intrusive_rocks_at_the_southeast_edge_of_Dayao_Mountain_Guangxi
      Xu, Y.J., Du, Y.S., 2018. From Periphery Collision to Intraplate Orogeny: Early Paleozoic Orogenesis in Southeastern Part of South China. Earth Science, 43(2): 333-353 (in Chinese with English abstract). http://www.researchgate.net/publication/324644295_From_Periphery_Collision_to_Intraplate_Orogeny_Early_Paleozoic_Orogenesis_in_Southeastern_Part_of_South_China
      Yang, M.G., Mei, Y.W., 1997. Characteristics of Geology and Metallization in the Qinzhou-Hangzhou Paleoplate Juncture. Geology and Mineral Resources of South China, 13(3): 52-59 (in Chinese with English abstract). http://www.researchgate.net/publication/284701970_Characteristics_of_geology_and_melatllizationin_the_Qinzhou-Hangzhou_paleoplate_juncture
      Yao, W. H., Li, Z. X., Li, W. X., et al., 2012. Post-Kinematic Lithospheric Delamination of the Wuyi-Yunkai Orogen in South China: Evidence from ca. 435 Ma High-Mg Basalts. Lithos, 154: 115-129. https://doi.org/10.1016/j.lithos.2012.06.033
      Zhang, C.L., Zhang, G.W., Yan, Y.X., et al., 2005. Origin and Dynamic Significance of Guangtoushan Granitic Plutons to the North of Mianlue Zone in Southern Qinling. Acta Petrologica Sinica, 21(3): 711-720 (in Chinese with English abstract). http://www.researchgate.net/profile/Chengli_Zhang/publication/287895432_Origin_and_dynamic_significance_of_Guangtoushan_granitic_plutons_to_the_north_of_Mianlue_zone_in_southern_Qinling/links/5826771508ae254c5080ee81.pdf
      Zhang, F. F., Wang, Y. J., Zhang, A. M., et al., 2012. Geochronological and Geochemical Constraints on the Petrogenesis of Middle Paleozoic (Kwangsian) Massive Granites in the Eastern South China Block. Lithos, 150: 188-208. https://doi.org/10.1016/j.lithos.2012.03.011
      Zhang, F.R., Shu, L.S., Wang, D.Z., et al., 2009. Discussions on the Tectonic Setting of Caledonian Granitoids in the Eastern Segment of South China. Earth Science Frontiers, 16(1): 248-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901034.htm
      Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science in China (Series D: Earth Sciences), 43(10): 1553-1582 (in Chinese with English abstract). doi: 10.1007/s11430-013-4679-1
      Zhang, Q., Jiang, Y. H., Wang, G. C., et al., 2015. Origin of Silurian Gabbros and Ⅰ-Type Granites in Central Fujian, SE China: Implications for the Evolution of the Early Paleozoic Orogen of South China. Lithos, 216/217: 285-297. https://doi.org/10.1016/j.lithos.2015.01.002
      Zhang, X. S., Xu, X. S., Xia, Y., et al., 2017. Early Paleozoic Intracontinental Orogeny and Post-Orogenic Extension in the South China Block: Insights from Volcanic Rocks. Journal of Asian Earth Sciences, 141: 24-42. https://doi.org/10.1016/j.jseaes.2016.07.016
      Zhang, Y., Niu, Y. L., Hu, Y., et al., 2016. The Syncollisional Granitoid Magmatism and Continental Crust Growth in the West Kunlun Orogen, China-Evidence from Geochronology and Geochemistry of the Arkarz Pluton. Lithos, 245: 191-204. https://doi.org/10.1016/j.lithos.2015.05.007
      Zhang, Z.Q., Chen, M.H., 2020. Geochronology of the Ingenous Intrusions in the Dayaoshan Uplift Southeastern Guangxi: Implicatian on the Paleozoic Wuyi-Yunkai Oorogeny and Related Metallogy. Acta Geologica Sinica, 88(s2): 1543-1544.
      Zhao, Z. H., 1997. Principles of Trace Element Geochemistry. Science Press, Beijing, 1-73 (in Chinese).
      Zhong, Y. F., Ma, C. Q., Zhang, C., et al., 2013. Zircon U-Pb Age, Hf Isotopic Compositions and Geochemistry of the Silurian Fengdingshan Ⅰ-Type Granite Pluton and Taoyuan Mafic-Felsic Complex at the Southeastern Margin of the Yangtze Block. Journal of Asian Earth Sciences, 74: 11-24. https://doi.org/10.1016/j.jseaes.2013.05.025
      Zhong, Y. F., Wang, L. X., Zhao, J. H., et al., 2016. Partial Melting of an Ancient Sub-Continental Lithospheric Mantle in the Early Paleozoic Intracontinental Regime and Its Contribution to Petrogenesis of the Coeval Peraluminous Granites in South China. Lithos, 264: 224-238. https://doi.org/10.1016/j.lithos.2016.08.026
      Zhu, A.H., Qin, X.F., Wang, Z.Q., et al., 2016. Discovery of Caledonian Mafic Rocks in Southwestern Hunan-Northern Guangxi Border Area and Its Geological Significance. Science Technology and Engineering, 16(5): 19-25 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KXJS201605004.htm
      Zou, Y., Nong, J.N., Guo, S.Y., et al., 2017. Petrogenesis of the Shangmushui Pluton in Southeast Guangxi: Constraints from Petrochemistry, Zircon U-Pb Ages and Hf Isotope. Journal of Mineralogy and Petrology, 37(2): 52-62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201702006.htm
      陈懋弘, 李忠阳, 李青, 等, 2015. 初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列. 地学前缘, 22(2): 41-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201502005.htm
      陈旭, 戎嘉余, Rowley, D.B., 等, 1995. 对华南早古生代板溪洋的质疑. 地质论评, 41(5): 389-400. doi: 10.3321/j.issn:0371-5736.1995.05.001
      陈旭, 张元动, 樊隽轩, 等, 2010. 赣南奥陶纪笔石地层序列与广西运动. 中国科学(D辑: 地球科学), 40(12): 1621-1631. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012002.htm
      高剑峰, 凌洪飞, 沈渭洲, 等, 2005. 粤西连阳复式岩体的地球化学特征及其成因研究. 岩石学报, 21(6): 1645-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200506014.htm
      高剑峰, 陆建军, 赖鸣远, 等, 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), 39(6): 844-850. doi: 10.3321/j.issn:0469-5097.2003.06.014
      关义立, 袁超, 龙晓平, 等, 2016. 华南早古生代花岗岩中暗色包体的成因: 岩石学、地球化学和锆石年代学证据. 大地构造与成矿学, 40(1): 109-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201601010.htm
      李巍, 毕诗健, 杨振, 等, 2015. 桂东大瑶山南缘社山花岗闪长岩的锆石U-Pb年龄及Hf同位素特征: 对区内加里东期成岩成矿作用的制约. 地球科学, 40(1): 17-33. doi: 10.3799/dqkx.2015.002
      李永军, 赵仁夫, 李注苍, 等, 2003. 岩浆混合花岗岩微量元素成因图解尝试: 以西秦岭温泉岩体为例. 长安大学学报(地球科学版), 25(3): 7-11, 15. doi: 10.3969/j.issn.1672-6561.2003.03.002
      刘宝珺, 许效松, 1994. 中国南方岩相古地理图集. 北京: 科学出版社, 1-188.
      马昌前, 杨坤光, 唐仲华, 等, 1994. 花岗岩类岩浆动力学——理论方法及鄂东花岗岩类例析. 武汉: 中国地质大学出版社.
      农军年, 黄锡强, 郭尚宇, 等, 2017a. 桂东大瑶山地区加里东期基性岩的发现及地质意义. 地质科技情报, 36(6): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706013.htm
      农军年, 邹瑜, 邱恩露, 等, 2017b. 桂东南大村和古龙岩体的成因: 地球化学、锆石U-Pb年龄及Hf同位素制约. 地质通报, 36(Z1): 224-237. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2017Z1006.htm
      彭松柏, 金振民, 付建明, 等, 2006a. 两广云开隆起区基性侵入岩的地球化学特征及其构造意义. 地质通报, 25(4): 434-441. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200604002.htm
      彭松柏, 金振民, 付建明, 等, 2006b. 云开地区新元古代蛇绿岩的地球化学证据及其构造意义. 地质学报, 80(6): 814-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200606004.htm
      彭松柏, 刘松峰, 林木森, 等, 2016a. 华夏早古生代俯冲作用(Ⅰ): 来自糯垌蛇绿岩的新证据. 地球科学, 41(5): 765-778. doi: 10.3799/dqkx.2016.065
      彭松柏, 刘松峰, 林木森, 等, 2016b. 华夏早古生代俯冲作用(Ⅱ): 大爽高镁-镁质安山岩新证据. 地球科学, 41(6): 931-947. doi: 10.3799/dqkx.2016.079
      覃小锋, 王宗起, 宫江华, 等, 2017. 云开地块北缘加里东期中-基性火山岩的厘定: 钦-杭结合带南西段早古生代古洋盆存在的证据. 岩石学报, 33(3): 791-809. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703010.htm
      覃小锋, 王宗起, 胡贵昂, 等, 2013. 两广交界地区壶垌片麻状复式岩体的年代学和地球化学: 对云开地块北缘早古生代构造-岩浆作用的启示. 岩石学报, 29(9): 3115-3130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309013.htm
      舒良树, 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
      王玲, 2014桂东北大宁花岗质侵入岩与镁铁质包体年代学、岩石学、地球化学及成因(硕士学位论文). 北京: 中国地质科学院, 1-87.
      魏春夏, 2016. 桂东北加里东期花岗岩岩石成因及其地质背景(硕士学位论文). 北京: 中国地质大学.
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      吴佳昌, 康志强, 冯佐海, 等, 2015. 广西大瑶山隆起区大村岩体年代学及地球化学特征. 桂林理工大学学报, 35(4): 747-755. doi: 10.3969/j.issn.1674-9057.2015.04.012
      肖庆辉, 邓晋福, 马大栓, 等, 2002. 花岗岩研究思维与方法. 北京: 地质出版社, 1-294.
      熊松泉, 康志强, 冯佐海, 等, 2015. 广西大瑶山地区大进岩体的锆石U-Pb年龄、地球化学特征及其意义. 桂林理工大学学报, 35(4): 736-746. doi: 10.3969/j.issn.1674-9057.2015.04.011
      许华, 黄炳诚, 倪战旭, 等, 2012. 钦杭成矿带西段古龙花岗岩株群岩石学、地球化学及年代学. 华南地质与矿产, 28(4): 331-339. doi: 10.3969/j.issn.1007-3701.2012.04.007
      许华, 倪战旭, 黄炳诚, 等, 2016. 广西大瑶山东南缘早古生代TTG侵入岩石组合的确定及其区域构造意义. 中国地质, 43(3): 780-796. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201603007.htm
      徐亚军, 杜远生, 2018. 从板缘碰撞到陆内造山: 华南东南缘早古生代造山作用演化. 地球科学, 43(2): 333-353. doi: 10.3799/dqkx.2017.582
      杨明桂, 梅勇文, 1997. 钦-杭古板块结合带与成矿带的主要特征. 华南地质与矿产, 13(3): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC199703008.htm
      张成立, 张国伟, 晏云翔, 等, 2005. 南秦岭勉略带北光头山花岗岩体群的成因及其构造意义. 岩石学报, 21(3): 711-720. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503013.htm
      张芳荣, 舒良树, 王德滋, 等, 2009. 华南东段加里东期花岗岩类形成构造背景探讨. 地学前缘, 16(1): 248-260. doi: 10.3321/j.issn:1005-2321.2009.01.027
      张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学(D辑: 地球科学), 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
      赵振华, 1997. 微量元素地球化学原理. 北京: 科学出版社, 1-73.
      朱安汉, 覃小锋, 王宗起, 等, 2016. 湘西南-桂北交界地区加里东期基性岩的发现及其地质意义. 科学技术与工程, 16(5): 19-25. doi: 10.3969/j.issn.1671-1815.2016.05.004
      邹瑜, 农军年, 郭尚宇, 等, 2017. 桂东南上木水岩体的成因: 地球化学、锆石U-Pb年龄及Hf同位素制约. 矿物岩石, 37(2): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201702006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(3)

      Article views (1617) PDF downloads(134) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return