Citation: | Li Wenbin, Fan Xuanmei, Huang Faming, Wu Xueling, Yin Kunlong, Chang Zhilu, 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042 |
Chang, Z. L., Du, Z., Zhang, F., et al., 2020a. Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models. Remote Sensing, 12(3): 502. https://doi.org/10.3390/rs12030502
|
Chang, Z. L., Gao, H. X., Huang, F. M., et al., 2020b. Study on the Creep Behaviours and the Improved Burgers Model of a Loess Landslide Considering Matric Suction. Natural Hazards, 103(1): 1479-1497. https://doi.org/10.1007/s11069-020-04046-0
|
Chen, W., Li, W. P., Hou, E. K., et al., 2015. Application of Frequency Ratio, Statistical Index, and Index of Entropy Models and Their Comparison in Landslide Susceptibility Mapping for the Baozhong Region of Baoji, China. Arabian Journal of Geosciences, 8(4): 1829-1841. https://doi.org/10.1007/s12517-014-1554-0
|
Chen, W., Xie, X. S., Peng, J. B., et al., 2018. GIS-Based Landslide Susceptibility Evaluation Using a Novel Hybrid Integration Approach of Bivariate Statistical Based Random Forest Method. CATENA, 164: 135-149. https://doi.org/10.1016/j.catena.2018.01.012
|
Chen, W., Xie, X. S., Wang, J. L., et al., 2017. A Comparative Study of Logistic Model Tree, Random Forest, and Classification and Regression Tree Models for Spatial Prediction of Landslide Susceptibility. CATENA, 151: 147-160. https://doi.org/10.1016/j.catena.2016.11.032
|
Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., et al., 2013. Landslide Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling-Narayanghat Road Section in Nepal Himalaya. Natural Hazards, 65(1): 135-165. https://doi.org/10.1007/s11069-012-0347-6
|
Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016. A Comparative Study on Plum-Rain-Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province. Earth Science, 41(3): 403-415(in Chinese with English abstract).
|
Guo, Z.Z., Yin, K.L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312(in Chinese with English abstract).
|
Guo, Z. Z., Yin, K. L., Gui, L., et al., 2019. Regional Rainfall Warning System for Landslides with Creep Deformation in Three Gorges Using a Statistical Black Box Model. Scientific Reports, 9: 8962. https://doi.org/10.1038/s41598-019-45403-9
|
Hong, H. Y., Chen, W., Xu, C., et al., 2017. Rainfall-Induced Landslide Susceptibility Assessment at the Chongren Area (China) Using Frequency Ratio, Certainty Factor, and Index of Entropy. Geocarto International, 32(2): 139-154. https://doi.org/10.1080/10106049.2015.1130086
|
Huang, F. M., Cao, Z. S., Guo, J. F., et al., 2020a. Comparisons of Heuristic, General Statistical and Machine Learning Models for Landslide Susceptibility Prediction and Mapping. CATENA, 191: 104580. https://doi.org/10.1016/j.catena.2020.104580
|
Huang, F. M., Cao, Z. S., Jiang, S. H., et al., 2020b. Landslide Susceptibility Prediction Based on a Semi-Supervised Multiple-Layer Perceptron Model. Landslides, 17(12): 2919-2930. https://doi.org/10.1007/s10346-020-01473-9
|
Huang, F. M., Chen, J. W., Du, Z., et al., 2020c. Landslide Susceptibility Prediction Considering Regional Soil Erosion Based on Machine-Learning Models. ISPRS International Journal of Geo-Information, 9(6): 377. https://doi.org/10.3390/ijgi9060377
|
Huang, F.M., Wang, Y., Dong, Z.L., et al., 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902027.htm
|
Huang, F. M., Ye, Z., Jiang, S. H., et al., 2021. Uncertainty Study of Landslide Susceptibility Prediction Considering the Different Attribute Interval Numbers of Environmental Factors and Different Data-Based Models. CATENA, 202: 105250. https://doi.org/10.1016/j.catena.2021.105250
|
Huang, Y., Zhao, L., 2018. Review on Landslide Susceptibility Mapping Using Support Vector Machines. CATENA, 165: 520-529. https://doi.org/10.1016/j.catena.2018.03.003
|
Jacobs, L., Kervyn, M., Reichenbach, P., et al., 2020. Regional Susceptibility Assessments with Heterogeneous Landslide Information: Slope Unit- vs. Pixel-Based Approach. Geomorphology, 356: 107084. https://doi.org/10.1016/j.geomorph.2020.107084
|
Li, W. B., Fan, X. M., Huang, F. M., et al., 2020. Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sensing, 12(24): 4134. https://doi.org/10.3390/rs12244134
|
Li, Y., Huang, J., Jiang, S. H., et al., 2017. A Web-Based GPS System for Displacement Monitoring and Failure Mechanism Analysis of Reservoir Landslide. Scientific Reports, 7(1): 17171. https://doi.org/10.1038/s41598-017-17507-7
|
Li, Y.L., Zhang, Q., Li, M., et al., 2015. Using BP Neural Networks for Water Level Simulation in Poyang Lake. Resources and Environment in the Yangtze Basin, 24(2): 233-240(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJLY201502008.htm
|
Liu, W. P., Luo, X. Y., Huang, F. M., et al., 2019. Prediction of Soil Water Retention Curve Using Bayesian Updating from Limited Measurement Data. Applied Mathematical Modelling, 76: 380-395. https://doi.org/10.1016/j.apm.2019.06.028
|
Ma, S.Y., Xu, C., Tian, Y.Y., et al., 2019. Application of Logistic Regression Model for Hazard Assessment of Earthquake-Triggered Landslides: A Case Study of 2017 Jiuzhaigou (China) MS7.0 Event. Seismology and Geology, 41(1): 162-177 (in Chinese with English abstract). http://www.researchgate.net/publication/333249215_Application_of_logistic_regression_model_for_hazard_assessment_of_earthquake-triggered_landslides_a_case_study_of_2017_jiuzhaigouchinaM_S_70_event
|
Merghadi, A., Yunus, A. P., Dou, J., et al., 2020. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Science Reviews, 207: 103225. https://doi.org/10.1016/j.earscirev.2020.103225
|
Pham, B. T., Tien Bui, D., Prakash, I., et al., 2017. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. CATENA, 149: 52-63. https://doi.org/10.1016/j.catena.2016.09.007
|
Qiu, H.J., Cao, M.M., Liu, W., et al., 2014. The Susceptibility Assessment of Landslide and Its Calibration of the Models Based on Three Different Models. Scientia Geographica Sinica, 34(1): 110-115(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DLKX201401016&dbcode=CJFD&year=2014&dflag=pdfdown
|
Qiu, H.J., Ma, S.Y., Cui, Y.F., et al., 2020. Reconsider the Role of Landslides. Journal of Northwest University (Natural Science Edition), 50(3): 377-385(in Chinese with English abstract).
|
Regmi, A. D., Devkota, K. C., Yoshida, K., et al., 2014. Application of Frequency Ratio, Statistical Index, and Weights-of-Evidence Models and Their Comparison in Landslide Susceptibility Mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2): 725-742. https://doi.org/10.1007/s12517-012-0807-z
|
Saha, S., Saha, M., Mukherjee, K., et al., 2020. Predicting the Deforestation Probability Using the Binary Logistic Regression, Random Forest, Ensemble Rotational Forest, REPTree: A Case Study at the Gumani River Basin, India. Science of the Total Environment, 730: 139197. https://doi.org/10.1016/j.scitotenv.2020.139197
|
Sun, D. L., Wen, H. J., Wang, D. Z., et al., 2020. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology, 362: 107201. https://doi.org/10.1016/j.geomorph.2020.107201
|
Wang, P., Bai, X. Y., Wu, X. Q., et al., 2018. GIS-Based Random Forest Weight for Rainfall-Induced Landslide Susceptibility Assessment at a Humid Region in Southern China. Water, 10(8): 1019. https://doi.org/10.3390/w10081019
|
Wang, Z.W., Wang, L., Huang, G.W., et al., 2020. Research on Multi-Source Heterogeneous Data Fusion Algorithm of Landslide Monitoring Based on BP Neural Network. Journal of Geomechanics, 26(4): 575-582(in Chinese with English abstract).
|
Wu, R.Z., Hu, X.D., Mei, H.B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330(in Chinese with English abstract).
|
Wu, Y.P., Zhang, Q.X., Tang, H.M., et al., 2014. Landslide Hazard Warning Based on Effective Rainfall Intensity. Earth Science, 39(7): 889-895(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201407011.htm
|
Xu, C., Dai, F. C., Xu, X. W., et al., 2012. GIS-Based Support Vector Machine Modeling of Earthquake-Triggered Landslide Susceptibility in the Jianjiang River Watershed, China. Geomorphology, 145/146: 70-80. https://doi.org/10.1016/j.geomorph.2011.12.040
|
Xu, Q., Dong, X.J., Li, W.L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WHCH201907002.htm
|
Xu, S.H., Liu, J.P., Wang, X.H., et al., 2020. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province. Geomatics and Information Science of Wuhan University, 45(8): 1214-1222(in Chinese with English abstract).
|
Yu, X.Y., Hu, Y.J., Niu, R.Q., 2016. Research on the Method to Select Landslide Susceptibility Evaluation Factors Based on RS-SVM Model. Geography and Geo-Information Science, 32(3): 23-28, 2(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DLGT201603005.htm
|
Zhang, J., Yin, K.L., Wang, J.J., et al., 2016. Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(2): 284-296(in Chinese with English abstract).
|
Zhang, Q.K., Ling, S.X., Li, X.N., et al., 2020. Comparison of Landslide Susceptibility Mapping Rapid Assessment Models in Jiuzhaigou County, Sichuan Province, China. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1595-1610(in Chinese with English abstract). http://www.researchgate.net/publication/340330642_Distribution_Pattern_of_Coseismic_Landslides_Triggered_by_the_2017_Jiuzhaigou_Ms_70_Earthquake_of_China_Control_of_Seismic_Landslide_Susceptibility
|
Zhang, S.H., Wu, G., 2019. Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS. Earth Science, 44(9): 3115-3134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909025.htm
|
Zhu, A.X., Lü, G.N., Zhou, C.H., et al., 2020. Geographic Similarity: Third Law of Geography? Journal of Geo-Information Science, 22(4): 673-679(in Chinese with English abstract).
|
Zhu, L., Huang, L. H., Fan, L. Y., et al., 2020. Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network. Sensors, 20(6): 1576. https://doi.org/10.3390/s20061576
|
Zhu, L., Wang, G. J., Huang, F. M., et al., 2021. Landslide Susceptibility Prediction Using Sparse Feature Extraction and Machine Learning Models Based on GIS and Remote Sensing. IEEE Geoscience and Remote Sensing Letters, 1-5. https://doi.org/10.1109/LGRS.2021.3054029
|
冯杭建, 周爱国, 俞剑君, 等, 2016. 浙西梅雨滑坡易发性评价模型对比. 地球科学, 41(3): 403-415. doi: 10.3799/dqkx.2016.032
|
郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555
|
黄发明, 汪洋, 董志良, 等, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2): 664-676. doi: 10.3799/dqkx.2018.175
|
李云良, 张奇, 李淼, 等, 2015. 基于BP神经网络的鄱阳湖水位模拟. 长江流域资源与环境, 24(2): 233-240. doi: 10.11870/cjlyzyyhj201502008
|
马思远, 许冲, 田颖颖, 等, 2019. 基于逻辑回归模型的九寨沟地震滑坡危险性评估. 地震地质, 41(1): 162-177. doi: 10.3969/j.issn.0253-4967.2019.01.011
|
邱海军, 曹明明, 刘闻, 等, 2014. 基于三种不同模型的区域滑坡灾害敏感性评价及结果检验研究. 地理科学, 34(1): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201401016.htm
|
邱海军, 马舒悦, 崔一飞, 等, 2020. 重新认识滑坡作用. 西北大学学报(自然科学版), 50(3): 377-385. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202003009.htm
|
王智伟, 王利, 黄观文, 等, 2020. 基于BP神经网络的滑坡监测多源异构数据融合算法研究. 地质力学学报, 26(4): 575-582. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004014.htm
|
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
|
吴益平, 张秋霞, 唐辉明, 等, 2014. 基于有效降雨强度的滑坡灾害危险性预警. 地球科学, 39(7): 889-895. doi: 10.3799/dqkx.2014.083
|
许强, 董秀军, 李为乐, 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报·信息科学版, 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm
|
徐胜华, 刘纪平, 王想红, 等, 2020. 熵指数融入支持向量机的滑坡灾害易发性评价方法: 以陕西省为例. 武汉大学学报·信息科学版, 45(8): 1214-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008012.htm
|
于宪煜, 胡友健, 牛瑞卿, 2016. 基于RS-SVM模型的滑坡易发性评价因子选择方法研究. 地理与地理信息科学, 32(3): 23-28, 2. doi: 10.3969/j.issn.1672-0504.2016.03.005
|
张俊, 殷坤龙, 王佳佳, 等, 2016. 三峡库区万州区滑坡灾害易发性评价研究. 岩石力学与工程学报, 35(2): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
|
张玘恺, 凌斯祥, 李晓宁, 等, 2020. 九寨沟县滑坡灾害易发性快速评估模型对比研究. 岩石力学与工程学报, 39(8): 1595-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm
|
张书豪, 吴光, 2019. 随机森林与GIS的泥石流易发性及可靠性. 地球科学, 44(9): 3115-3134. doi: 10.3799/dqkx.2019.081
|
朱阿兴, 闾国年, 周成虎, 等, 2020. 地理相似性: 地理学的第三定律?. 地球信息科学学报, 22(4): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202004005.htm
|