| Citation: | Zou Shuang, Zhang Dong, Li Xiaoqian, Wu Yangyang, Li Yuhong, Zhu Shuangshuang, Liu Yuntao, Duan Huizhen, Guo Wenjing, 2022. Sources and Pollution Pathways of Deep Groundwater Sulfate Underneath the Piedmont Plain in the North Henan Province. Earth Science, 47(2): 700-716. doi: 10.3799/dqkx.2021.043 |
|
Balci, N., Shanks, Iii., W, C., Mayer, B., et al., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite. Geochimica et Cosmochimica Acta, 71(15): 3796-3811. https://doi.org/10.1016/j.gca.2007.04.017
|
|
Egbi, C.D., Anormu, G. K., Ganyaglo, S. Y., et al., 2020. Nitrate Contamination of Groundwater in the Lower Volta River Basin of Ghana: Sources and Related Human Health Risks. Ecotoxicology and Environmental Safety, 191: 110227. https://doi.org/10.1016/j.ecoenv.2020.110227
|
|
Fan, B. L., Zhang, D., Tao, Z. H., et al., 2017. Compositions of Hydrogen and Oxygen Isotope Values of Yellow River Water and the Response to Climate Change. China Environmental Science, 37(5): 1906-1914(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGHJ201705038.htm
|
|
Fan, B.L., Zhao, Z. Q., Tao, F. X., et al., 2014. Characteristics of Carbonate, Evaporite and Silicate Weathering in Huanghe River Basin: A Comparison among the Upstream, Midstream and Downstream. Journal of Asian Earth Sciences, 96: 17-26. https://doi.org/10.1016/j.jseaes.2014.09.005
|
|
Fouillac, C., Fouillac, A.M., Criaud, A., 1990. Sulphur and Oxygen Isotopes of Dissolved Sulphur Species in Formation Waters from the Dogger Geothermal Aquifer, Paris Basin, France. Applied Geochemistry, 5(4): 415-427. https://doi.org/10.1016/0883-2927(90)90018-Z
|
|
Gilhooly, III. W.P., Reinhard, C.T., Lyons, T.W., 2016. A Comprehensive Sulfur and Oxygen Isotope Study of Sulfur Cycling in a Shallow, Hyper-Euxinic Meromictic Lake. Geochimica et Cosmochimica Acta, 189: 1-23. https://doi.org/10.1016/j.gca.2016.05.044
|
|
Guo, H., Zhou, Y., Jia, Y., et al., 2016. Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches. Environmental Science & Technology, 50(23): 12650-12659. https://doi.org/10.1021/acs.est.6b03460
|
|
He, J.Y., Zhang, D., Zhao, Z.Q., 2017. Spatial and Temporal Variations in Hydrochemical Composition of River Water in Yellow River Basin, China. Chinese Journal of Ecology, 36(5): 1390-1401(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-STXZ201705028.htm
|
|
Holser, W.T., Kaplan, I.R., Sakai, H., et al., 1979. Isotope Geochemistry of Oxygen in the Sedimentary Sulfate Cycle. Chemical Geology, 25(1): 1-17. https://doi.org/10.1016/0009-2541(79)90079-2
|
|
Hong, Y.T., Zhang, H.B., Zhu, Y.X., et al., 1994. Sulfur Isotopic Composition of Precipitation in China. Advancesin Natural Sciences-Correspondence of State Key Laboratories, 4(6): 741-745(in Chinese).
|
|
Huang, Q.B., Qin, X.Q., Liu, P.Y., et al., 2014. The Characteristics and Influencing Factors of SO42- and Sulfate Isotope(δ34S) in Different Types of Groundwater in Fenyang, ShanXi Province. Quaternary Sciences, 34(2): 364-371(in Chinesewith English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ201402010.htm
|
|
Jia, X. S., Zhang, D., Zhao, Z. Q., 2016. Hydrogen and Oxygen Isotopic Compositions of Groundwater and Surface Water in South Piedmont Plain of Taihang Mountain and Its Environmental Significance. Earth and Environment, 44(3): 281-289(in Chinesewith English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201603001.htm
|
|
Jiao, Y. J., Wang, G. C., Cui, L. F., et al., 2014. Characteristics of Hydrochemistry and Stable Hydrogen, Oxygen Isotopes in Surface Water and Groundwater in Jiyuan Basin. Environment Chemistry, 33(6): 962-968(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/hjhx201406015
|
|
Lang, Y. C., Liu, C. Q., Satake, H., et al., 2008. δ37Cl and δ34S Variations of Cl- and SO42- in groundwater and Surface Water of Guiyang Area, China. Advances in Earth Science, (2): 151-159(in Chinesewith English abstract). http://www.researchgate.net/publication/288930235_d37_Cl_and_d34S_Variations_of_Cl-_and_SO42-_in_groundwater_and_surface_water_of_Guiyang_area_China_J
|
|
Li, W. P., Wang, L. F., Yang, H. F., et al., 2020a. The Groundwater Overexploitation Status and Countermeasure Suggestions of the North China Plain. China Water Resources, (13): 26-30(in Chinese with English abstract).
|
|
Li, X., Tang, C., Cao, Y., et al., 2020b. A Multiple Isotope (H, O, N, C and S) Approach to Elucidate the Hydrochemical Evolution of Shallow Groundwater in a Rapidly Urbanized Area of the Pearl River Delta, China. Science of The Total Environment, 724: 137930. https://doi.org/10.1016/j.scitotenv.2020.137930
|
|
Li, X., Zhou, A., Gan, Y., et al., 2011. Controls on the δ34S and δ18O of Dissolved Sulfate in the Quaternary Aquifers of the North China Plain. Journal of Hydrology, 400(3-4): 312-322. https://doi.org/10.1016/j.jhydrol.2011.01.034
|
|
Li, X.D., Liu, C. Q., Harue, M., et al., 2010. The Use of Environmental Isotopic (C, Sr, S) and Hydrochemical Tracers to Characterize Anthropogenic Effects on Karst Groundwater Quality: A Case Study of the Shuicheng Basin, SW China. Applied Geochemistry, 25(12): 1924-1936. https://doi.org/10.1016/j.apgeochem.2010.10.008
|
|
Liu, F., Wang, S., Yeh, T. J., et al., ,2020. Using Multivariate Statistical Techniques and Geochemical Modeling to Identify Factors Controlling the Evolution of Groundwater Chemistry in a Typical Transitional Area between Taihang Mountain and North China Plain. Hydrological Processes, 34(8): 1888-1905. https://doi.org/10.1002/hyp.13701
|
|
Liu, Y. T., Zhang, D., Zhao, Z. Q., 2017. Hydro-Chemical and Isotopic Compositions of Groundwater in Piedmont Plain of the South Taihang Mountain. Earth and Environment, 45(2): 203-213(in Chinesewith English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201702012.htm
|
|
Markovic, S., Paytan, A., Li, H., et al., 2016. A Revised Seawater Sulfate Oxygen Isotope Record for the Last 4 Ma. Geochimica et Cosmochimica Acta, 175: 239-251. https://doi.org/10.1016/j.gca.2015.12.005
|
|
Parnell, A.C., Inger, R., Bearhop, S., et al., 2010. Source Partitioning Using Stable Isotopes: Coping with too Much Variation. PloS one, 5(3): e9672. https://doi.org/10.1371/journal.pone.0009672
|
|
Pei, J. G., Tao, Y.L., Tong, C.S., 1993. Environmental Isotope of Natural Water and Its Application in Karst Hydrogeologyin Jiaozuo Area. Carsologica Sinica, 12(1): 45-53(in Chinesewith English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR199301005.htm
|
|
Qin, Y., Zhang, D., Zhao, Z. Q., 2016. Spatial and Temporal Variations of Hydrochemical Compositions of River Water in Qinhe Basin. Chinese Journal of Ecology, 35(6): 1516-1524(in Chinese with English abstract). http://www.cqvip.com/QK/90811X/201606/669054175.html
|
|
Shi, J.S., Li, G.M., Liang, X., et al., 2014. Evolution Mechanism and Control of Groundwater in the North China Plain. Acta Geoscientica Sinica, 35(5): 527-534(in Chinese with English abstract).
|
|
Song, H. B., Zhang, Z. J., Fei, Y. H., et al., 2007. Down-Movement of the Fresh-Saline Groundwater Interface in the Middle of the Hebei Plain under the Condition of Exploitation. Hydrogeology and Engineering Geology, (1): 44-46, 52(in Chinesewith English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200701009.htm
|
|
Song, X. Q., Peng, Q., Wang, W., et al., 2019. Analysis of Environmental Background Valuesof Chloride and Sulfate in Shallow Groundwater in Karst Area of Guizhou. Earth Science, 44(11): 3926-3938(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911027.htm
|
|
Turchyn, A.V., Tipper, E.T., Galy, A., et al., 2013. Isotope Evidence for Secondary Sulfide Precipitation along the Marsyandi River, Nepal, Himalayas. Earth and Planetary Science Letters, 374: 36-46. https://doi.org/10.1016/j.epsl.2013.04.033
|
|
Tuttle, M.L.W., Breit, G.N., Cozzarelli, I.M., 2009. Processes Affecting δ34S and δ18O values of Dissolved Sulfate in Alluvium along the Canadian River, Central Oklahoma, USA. Chemical Geology, 265(3-4): 455-467. https://doi.org/10.1016/j.chemgeo.2009.05.009
|
|
Wang, H. C., 1991. Introduction to Isotopic Hydrogeology. Geology Press, Beijing, 191(in Chinese).
|
|
Wang, Y. J., Hu, Y. Y., Sheng, J. F., et al., 2011. Sulfur and Lead Isotope Composition and Tracing for Sources of Ore-Forming Materials in Beiming River Iron Deposits, Southern Taihang Mountains. Geoscience, 25(5): 846-852(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201105008.htm
|
|
Wang, Y. T., Li, J. X., Xue, X. B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0269749121010642
|
|
Xiao, H. Y., Liu, C.Q., 2011. The Elemental and Isotopic Composition of Sulfur and Nitrogen in Chinese coals. Organic Geochemistry, 42(1): 84-93. https://doi.org/10.1016/j.orggeochem.2010.10.011
|
|
Xiao, H. Y., Liu, C. Q., Li, S. L., 2003. Geochemical Characteristics of Sulfur and Nitrogen Isotopic Compositions in Rains of Guiyang in Summer. Geochimica, 32(3): 248-254(in Chinesewith English abstract). http://www.researchgate.net/publication/288882911_Geochemical_characteristics_of_sulfur_and_nitrogen_isotopic_compositions_in_rains_of_Guiyang_in_summer
|
|
Xie, X., Ellis, A., Wang, Y., et al., 2009. Geochemistry of Redox-SensitiveElements and Sulfur Isotopes in the High Arsenic Groundwater System of Datong Basin, China. Science of The Total Environment, 407(12): 3823-3835. https://doi.org/10.1016/j.scitotenv.2009.01.041
|
|
Xie, X., Wang, Y., Ellis, A., et al., 2013. Multiple Isotope (O, S and C) Approach Elucidates the Enrichment of Arsenic in the Groundwater from the Datong Basin, Northern China. Journal of Hydrology, 498: 103-112. https://doi.org/10.1016/j.jhydrol.2013.06.024
|
|
Xue, X. B., Li, J. X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921(in Chinese with English abstract). http://europepmc.org/abstract/MED/29611121
|
|
Xue, D., De, Baets. B., Botte, J., et al., 2012. Use of a Bayesian Isotope Mixing Model to Estimate Proportional Contributions of Multiple Nitrate Sources in Surface Water. Environmental Pollution, 161: 43-49. https://doi.org/10.1016/j.envpol.2011.09.033
|
|
Yang, X.C., Sheng, Z.L., Wen, D.G., et al., 2008. Hydrochemical Characteristics and Sources of Sulfate in Groundwater of the Ordoscretaceous Goundwater Basin. Acta Geoscientica Sinica, (5): 553-562(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqxb200805004.htm
|
|
Yang, L. Z., Qu, W. L., Zhang, Y., et al., 2013. A Discussion on Deep Groundwater Origin of Dezhou in Shandong Province Based on Water Chemical Composition and Environmental Isotopic Information. Acta Geoscientica Sinica, 34(4): 463-469(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201304011.htm
|
|
Zhang, D., Li, X.D., Zhao, Z.Q., et al., 2015. Using Dual Isotopic Data to Rack the Sources and Behaviors of Dissolved Sulfate in the Western North China Plain. Applied Geochemistry, 52: 43-56. https://doi.org/10.1016/j.apgeochem.2014.11.011
|
|
Zhang, D., Huang, X. Y., Li, C. J., 2013. Sources of Riverine Sulfate in Yellow River and Its Tributaries Determined by Sulfur and Oxygen Isotopes. Advances in Water Science, 24(3): 418-426(in Chinesewith English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201303017.htm
|
|
Zhang, D., Li, Y. H., Zhang, H.Y., 2019a. Application of Modified DDARP Method for Purification of Barite in Natural Water Samples. Rock and Mineral Analysis, 38(1): 77-84(in Chinese with English abstract). http://www.researchgate.net/publication/342782405_Application_of_Modified_DDARP_Method_for_Purification_of_Barite_in_Natural_Water_Samples
|
|
Zhang, Q., Wang, H., Lu, C., 2020. Tracing Sulfate Origin and Transformation in an Area with Multiple Sources of Pollution in Northern China by Using Environmental Isotopes and Bayesian Isotope Mixing Model. Environmental Pollution, 265: 115105. https://doi.org/10.1016/j.envpol.2020.115105
|
|
Zhang, D., Liu, C.Q., Wang, F.S., et al., 2015. Inorganic Carbon Cycling in Subsurface Environment Influenced by Agricultural Activities. China Environmental Science, 35(11): 3359-3370(in Chinese with English abstract). http://www.researchgate.net/profile/Zhi_Qi_Zhao2/publication/288230069_Inorganic_carbon_cycling_in_subsurface_environment_influenced_by_agricultural_activities/links/56e4e74408ae98445c1ef9d1/Inorganic-carbon-cycling-in-subsurface-environment-influenced-by-agricultural-activities.pdf
|
|
Zhang, D., Yang, J.M., Huang, X.Y., et al., 2019b. Sources of Dissolved Heavy Metals in River Water of the Yiluo River Basin Based on Sulfur Isotope of Sulfate. China Environmental Science, 39(6): 2549-2559(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGHJ201906042.htm
|
|
Zhang, H.L., Wang, C., Pang, W., et al., 2019. Using Sulfur and Oxygen Isotope to Trace the Source of Sulphate in Baotuquan Spring Area of Jinan. Geological Survey of China, 6(1): 75-80(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDC201901011.htm
|
|
Zhang, Z.J., Fei, Y.H., Guo, C.Y., et al., 2012. Regional Groundwater Contamination Assessment in the North China Plain. Journal of Jilin University(Earth Science Edition), 42(5): 1456-1461(in Chinese with English abstract). http://www.researchgate.net/publication/281604046_Regional_groundwater_contamination_assessment_in_the_North_China_Plain
|
|
Zhou, J., Zhang, Y., Zhou, A., et al., 2016. Application of Hydrochemistry and Stable Isotopes (δ34S, δ18O and δ37Cl) to Trace Natural and Anthropogenic Influences on the Quality of Groundwater in the Piedmont Region, Shijiazhuang, China. Applied Geochemistry, 71: 63-72. https://doi.org/10.1016/j.apgeochem.2016.05.018
|
|
范百龄, 张东, 陶正华, 等, 2017. 黄河水氢、氧同位素组成特征及其气候变化响应. 中国环境科学, 37(5): 1906-1914. doi: 10.3969/j.issn.1000-6923.2017.05.038
|
|
何姜毅, 张东, 赵志琦, 2017. 黄河流域河水水化学组成的时间和空间变化特征. 生态学杂志, 36(5): 1390-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201705028.htm
|
|
洪业汤, 张鸿斌, 朱詠煊, 等, 1994. 中国大气降水的硫同位素组成特征. 自然科学进展: 国家重点实验室通讯, 4(6): 741-745. doi: 10.3321/j.issn:1002-008X.1994.06.013
|
|
黄奇波, 覃小群, 刘朋雨, 等, 2014. 汾阳地区不同类型地下水SO42-、δ34S的特征及影响因素. 第四纪研究, 34(2): 364-371. doi: 10.3969/j.issn.1001-7410.2014.02.10
|
|
贾新生, 张东, 赵志琦, 2016. 南太行山山前平原地下水和地表水氢氧同位素组成及环境意义. 地球与环境, 44(3): 281-289. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201603001.htm
|
|
焦艳军, 王广才, 崔霖峰, 等, 2014. 济源盆地地表水和地下水的水化学及氢、氧同位素特征. 环境化学, 33(6): 962-968. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201406015.htm
|
|
郎赟超, 刘丛强, Satake H., 等, 2008. 贵阳地表水-地下水的硫和氯同位素组成特征及其污染物示踪意义. 地球科学进展(2): 151-159. doi: 10.3321/j.issn:1001-8166.2008.02.005
|
|
李文鹏, 王龙凤, 杨会峰, 等, 2020. 华北平原地下水超采状况与治理对策建议. 中国水利, (13): 26-30. doi: 10.3969/j.issn.1000-1123.2020.13.017
|
|
刘运涛, 张东, 赵志琦, 2017. 南太行山山前平原地下水水化学以及同位素组成研究. 地球与环境, 45(2): 203-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201702012.htm
|
|
裴建国, 陶友良, 童长水, 1993. 焦作地区天然水环境同位素组成及其在岩溶水文地质中的应用. 中国岩溶, 12(1): 45r53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR199301005.htm
|
|
秦勇, 张东, 赵志琦, 2016. 沁河流域水化学组成的空间和时间变化特征. 生态学杂志, 35(6): 1516-1524. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201606017.htm
|
|
石建省, 李国敏, 梁杏, 等, 2014. 华北平原地下水演变机制与调控. 地球学报, 35(5): 527-534. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201405001.htm
|
|
宋海波, 张兆吉, 费宇红, 等, 2007. 开采条件下河北平原中部咸淡水界面下移. 水文地质工程地质, (1): 44-46, 52. doi: 10.3969/j.issn.1000-3665.2007.01.009
|
|
宋小庆, 彭钦, 王伟, 等, 2019. 贵州岩溶区浅层地下水氯化物及硫酸盐环境背景值. 地球科学, 44(11): 3926-3938. doi: 10.3799/dqkx.2019.166
|
|
王恒纯, 1991. 同位素水文地质概论. 北京: 地质出版社, 191.
|
|
王艳娟, 胡援越, 申俊峰, 等, 2011. 太行山南段北洺河铁矿S、Pb同位素组成及其对成矿物质来源的示踪. 现代地质, 25(5): 846-852. doi: 10.3969/j.issn.1000-8527.2011.05.003
|
|
王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
|
|
肖化云, 刘丛强, 李思亮, 2003. 贵阳地区夏季雨水硫和氮同位素地球化学特征. 地球化学, 32(3): 248-254. doi: 10.3321/j.issn:0379-1726.2003.03.006
|
|
薛肖斌, 李俊霞, 钱坤, 等, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
|
|
杨丽芝, 曲万龙, 张勇, 等, 2013. 基于水化学组分和环境同位素信息探讨山东德州深层承压地下水起源. 地球学报, 34(4): 463-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201304011.htm
|
|
杨郧城, 沈照理, 文冬光, 等, 2008. 鄂尔多斯白垩系地下水盆地硫酸盐的水文地球化学特征及来源. 地球学报(5): 553-562. doi: 10.3321/j.issn:1006-3021.2008.05.003
|
|
张东, 黄兴宇, 李成杰, 2013. 硫和氧同位素示踪黄河及支流河水硫酸盐来源. 水科学进展, 24(3): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201303017.htm
|
|
张东, 李玉红, 张鸿禹, 2019a. 应用改进DDARP方法纯化天然水体样品中硫酸钡固体的效果评价. 岩矿测试, 38(1): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901011.htm
|
|
张东, 杨锦媚, 黄兴宇, 等, 2019b. 基于硫酸盐硫同位素的伊洛河流域河水溶解性重金属来源. 中国环境科学, 39(6): 2549-2559. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201906042.htm
|
|
张东, 刘丛强, 汪福顺, 等, 2015. 农业活动干扰下地下水无机碳循环过程研究. 中国环境科学, 35(11): 3359-3370. doi: 10.3969/j.issn.1000-6923.2015.11.022
|
|
张海林, 王重, 逄伟, 等, 2019. 硫氧同位素示踪污染物来源在济南岩溶水中的应用. 中国地质调查, 6(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201901011.htm
|
|
张兆吉, 费宇红, 郭春艳, 等, 2012. 华北平原区域地下水污染评价. 吉林大学学报(地球科学版), 42(5): 1456-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205019.htm
|