• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Zhang Cong, Li Xiaohu, Li Jie, Zhu Feiyang, Dong Yanhui, Chu Fengyou, 2022. Elements Enrichment Mechanism of Polymetallic Nodules in CCFZ area of Eastern Pacific Ocean: In-Situ Microanalysis of Nodule Profile. Earth Science, 47(2): 742-756. doi: 10.3799/dqkx.2021.063
    Citation: Zhang Cong, Li Xiaohu, Li Jie, Zhu Feiyang, Dong Yanhui, Chu Fengyou, 2022. Elements Enrichment Mechanism of Polymetallic Nodules in CCFZ area of Eastern Pacific Ocean: In-Situ Microanalysis of Nodule Profile. Earth Science, 47(2): 742-756. doi: 10.3799/dqkx.2021.063

    Elements Enrichment Mechanism of Polymetallic Nodules in CCFZ area of Eastern Pacific Ocean: In-Situ Microanalysis of Nodule Profile

    doi: 10.3799/dqkx.2021.063
    • Received Date: 2021-03-19
    • Publish Date: 2022-02-25
    • In-situ microanalysis of polymetallic nodule can better reveal the occurrence and migration of elements in the growth process of polymetallic nodules than bulk nodule analysis, and provide new evidence for understanding the enrichment mechanism and genesis of polymetallic nodules. In this study, electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to analyze the polymetallic nodule collected from the Clarion-Clipperton Fault Zone (CCFZ) of the East Pacific Ocean. The results show that the main minerals of the nodule are vernadite, 10 Å manganite and FeOOH. From the inside to the outside, the ferromanganese nodule can be divided into four distinct layer groups: L1, L2, L3 and L4, the average contents of Mn and Fe are 32.2 and 13.3%, 39.1 and 5.2%, 37.0 and 3.4%, 33.1 and 7.8%, respectively. The Mn/Fe ratio increases as a whole, and corresponding to 2.8, 16.6, 19.7 and 10.6, respectively. The variation of Co+Ni+Cu content shows similar trend, with the average content of 1.9%, 3.3%, 3.8% and 3.0%, respectively.The relationship of element content shows that Co mainly occurs in hydrogeneticvernadite, Ni and Cu both occur in hydrogenetic and diagenetic Mn phase minerals, while the enrichment ability of diagenetic 10 Å manganite is stronger than hydrogeneticvernadite. Based on the element composition and microstructure, the layers can be divided into hydrogenetic layer, mixed layer, diagenetic layer and mixed layer, respectively, and the nodules experienced hydrogenetic growth and diagenetic growth successively.

       

    • loading
    • Bau, M., Koschinsky, A., Dulski, P., et al., 1996. Comparison of the Partitioning Behaviours of Yttrium, Rare Earth Elements, and Titanium between Hydrogenetic Marine Ferromanganese Crusts and Seawater. Geochimica et Cosmochimica Acta, 60(10): 1709-1725. https://doi.org/10.1016/0016-7037(96)00063-4
      Benites, M., Millo, C., Hein, J., et al., 2018. Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules. Minerals, 8(11): 488. https://doi.org/10.3390/min8110488
      Bodei, S., Manceau, A., Geoffroy, N., et al., 2007. Formation of Todorokite from Vernadite in Ni-Rich Hemipelagic Sediments. Geochimica et Cosmochimica Acta, 71(23): 5698-5716. https://doi.org/10.1016/j.gca.2007.07.020
      Burns, R. G., Fuerstenau, D. W., 1966. Electron-Probe Determination of Inter-Element Relationships in Manganese Nodules. American Mineralogist, 51: 895-902
      Burns, R. G, 1976. The Uptake of Cobalt into Ferromanganese Nodules, Soils, and Synthetic Manganese (IV) Oxides. Geochimica et Cosmochimica Acta, 40(1): 95-102. https://doi.org/10.1016/0016-7037(76)90197-6
      Calvert, S. E., Price, N. B, 1977. Geochemical Variation in Ferromanganese Nodules and Associated Sediments from the Pacific Ocean. Marine Chemistry, 5(1): 43-74. https://doi.org/10.1016/0304-4203(77)90014-7
      Deng, Y.N., Ren, J.B., Guo, Q.J., et al., 2019. Trace Elements Geochemistry Characteristics of Seawater and Porewater in Deep-Water Basin, Western Pacific. Earth Science, 44(9): 3101-3114(in Chinese with English abstract).
      Dimitrova, D., Milakovska, Z., Peytcheva, I., et al., 2014. Trace Element and REY Composition of Polymetallic Nodules from the Eastern Clarion-Clipperton Zone Determined by In-Situ LA-ICP-MS Analysis. Comptes Rendus Del Académie Bulgare Des Sciences: Sciences Mathématiques et Naturelles, 67(2): 267-274.
      Dominik, Z., Ukasz, M., Kotliński, R. A., et al., 2018. Geochemistry of Cobalt-Rich Ferromanganese Crusts from the Perth Abyssal Plain (E Indian Ocean). Ore Geology Reviews, 101: 520-531. https://doi.org/10.1016/j.oregeorev.2018.08.004
      Dymond, J., Lyle, M., Finney, B., et al., 1984. Ferromanganese Nodules from MANOP Sites H, S, and R-Control of Mineralogical and Chemical Composition by Multiple Accretionary Processes. Geochimica et Cosmochimica Acta, 48(5): 931-949. https://doi.org/10.1016/0016-7037(84)90186-8
      Guan, Y., Sun, X. M., Shi, G. Y., et al., 2017. Rare Earth Elements Composition and Constraint on the Genesis of the Polymetallic Crusts and Nodules in the South China Sea. Acta Geologica Sinica-English Edition, 91(5): 1751-1766. https://doi.org/10.1111/1755-6724.13409
      Guan, Y., Ren, Y. Z., Sun, X. M., et al., 2019. Fine Scale Study of Major and Trace Elements in the Fe-Mn Nodules from the South China Sea and Their Metallogenic Constraints. Marine Geology, 416: 105978. https://doi.org/10.1016/j.margeo.2019.105978
      Han, C.F., Yao, D., Xu, D. Y, 1994. Growth History of Manganese Nodules in Central Pacific Ocean. Marine Geology & Quaternary Geology, 14(4): 33-41 (in Chinese with English abstract).
      He, G.W., Sun, X.M., Yang, S.X., et al., 2011. A Comparison of REE Geochemistry between Polymetallic Nodules and Cobalt-Rich Crusts in the Pacific Ocean. Geology in China, 38(2): 462-472(in Chinese with English abstract).
      Hein, J. R., Mizell, K., Koschinsky, A., et al., 2013. Deep-Ocean Mineral Deposits as a Source of Critical Metals for High-and Green-Technology Applications: Comparison with Land-Based Resources. Ore Geology Reviews, 51: 1-14. https://doi.org/10.1016/j.oregeorev.2012.12.001
      Hein, J. R., Koschinsky, A., 2014. Deep-Ocean Ferromanganese Crusts and Nodules. Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 273-291. https://doi.org/10.1016/b978-0-08-095975-7.01111-6
      Jiang, X. J., Lin, X. H., Yao, D., et al., 2010. Enrichment Mechanisms of Rare Earth Elements in Marine Hydrogenic Ferromanganese Crusts. Science China Earth Sciences, 54(2): 197-203. https://doi.org/10.1007/s11430-010-4070-4
      Koschinsky, A., Halbach, P, 1995. Sequential Leaching of Marine Ferromanganese Precipitates: Genetic Implications. Geochimica et Cosmochimica Acta, 59(24): 5113-5132. https://doi.org/10.1016/0016-7037(95)00358-4
      Lei, G. B., Bostrom, K, 1995. Mineralogical Control on Transition Metal Distributions in Marine Manganese Nodules. Marine Geology, 123(3/4): 253-261. https://doi.org/10.1016/0025-3227(95)00022-Q
      Lei, G. B, 1996. Crystal Structures and Metal Uptake Capacity of 10-Manganates: an Overview. Marine Geology, 133(1/2): 103-112. https://doi.org/10.1016/0025-3227(96)00010-2
      Li, D. F., Fu, Y., Liu, Q. F., et al., 2020a. High-Resolution LA-ICP-MS Mapping of Deep-Sea Polymetallic Micronodules and Its Implications on Element Mobility. Gondwana Research, 81: 461-474. https://doi.org/10.1016/j.gr.2019.12.009
      Li, D. F., Fu, Y., Sun, X. M., et al., 2020b. Critical Metal Enrichment Mechanism of Deep-Sea Hydrogenetic Nodules: Insights from Mineralogy and Element Mobility. Ore Geology Reviews, 118: 103371. https://doi.org/10.1016/j.oregeorev.2020.103371
      Liu, J. H., 1992. Geochemistry of REE of Deep Sea Sediments in the Eastern Pacific Ocean. Marine Geology & Quaternary Geology, 12(2): 35-44(in Chinese with English abstract).
      Manheim, F. T., Lane-Bostwick, C. M, 1988. Cobalt in Ferromanganese Crusts as a Monitor of Hydrothermal Discharge on the Pacific Sea Floor. Nature, 335(6185): 59-62. https://doi.org/10.1038/335059a0
      Manceau, A., Lanson, M., Takahashi, Y., 2014. Mineralogy and Crystal Chemistry of Mn, Fe, Co, Ni, and Cu in a Deep-Sea Pacific Polymetallic Nodule. American Mineralogist, 99(10): 2068-2083. https://doi.org/10.2138/am-2014-4742
      Menendez, A., James, R. H., Lichtschlag, A., et al., 2019. Controls on the Chemical Composition of Ferromanganese Nodules in the Clarion-Clipperton Fracture Zone, Eastern Equatorial Pacific. Marine Geology, 409: 1-14. https://doi.org/10.1016/j.margeo.2018.12.004
      Piper, D. Z, 1974. Rare Earth Elements in Ferromanganese Nodules and other Marine Phases. Geochimica et Cosmochimica Acta, 38(7): 1007-1022. https://doi.org/10.1016/0016-7037(74)90002-7
      Radziejewska, T., 2014. Characteristics of the Sub-Equatorial North-Eastern Pacific Ocean's Abyss, with a Particular Reference to the Clarion-Clipperton Fracture Zone. Meiobenthos in the Sub-Equatorial Pacific Abyss, 15: 1-12. https://doi.org/10.1007/978-3-642-41458-9_2
      Ren, J.B., Deng, X.G., Deng, Y.N., et al., 2019. Rare Earth Element Characteristics and Its Geological Implications for Seawater from Cobalt-Rich Ferromanganese Crust Exploration Contract Area of China. Earth Science, 44(10): 3529-3540(in Chinese with English abstract).
      Reykhard, L. Y., Shulga, N. A, 2019. Fe-Mn Nodule Morphotypes from the NE Clarion-Clipperton Fracture Zone, Pacific Ocean: Comparison of Mineralogy, Geochemistry and Genesis. Ore Geology Reviews, 110: 102933. https://doi.org/10.1016/j.oregeorev.2019.102933
      Skornyakova, N. S., Murdmaa, I. O, 1992. Local Variations in Distribution and Composition of Ferromanganese Nodules in the Clarion-Clipperton Nodule Province. Marine Geology, 103(1/2/3): 381-405. https://doi.org/10.1016/0025-3227(92)90028-G
      Takahashi, Y., Manceau, A., Geoffroy, N., et al., 2007. Chemical and Structural Control of the Partitioning of Co, Ce, and Pb in Marine Ferromanganese Oxides. Geochimica et Cosmochimica Acta, 71(4): 984-1008. https://doi.org/10.1016/j.gca.2006.11.016
      Usui, A, 1979. Nickel and Copper Accumplation as Essential Elements in 10-Å Manganite of Deep-Sea Manganese Nodules. Nature, 279(5712): 411-413. https://doi.org/10.1038/279411a0
      Wegorzewski, A. V., Kuhn, T, 2014. The Influence of Suboxic Diagenesis on the Formation of Manganese Nodules in the Clarion Clipperton Nodule Belt of the Pacific Ocean. Marine Geology, 357: 123-138. https://doi.org/10.1016/j.margeo.2014.07.004
      Wegorzewski, A. V., Kuhn, T., Dohrmann, R., et al., 2015. Mineralogical Characterization of Individual Growth Structures of Mn-Nodules with Different Ni+Cu Content from the Central Pacific Ocean. American Mineralogist, 100(11/12): 2497-2508. https://doi.org/10.2138/am-2015-5122
      Zhang, H.S., Zhao, P.D., Hu, G. D, 2004. Geochemical Features of Multi-Metallic Crust in the Middle Pacific Ocean. Earth Science, 29(3): 340-346(in Chinese with English abstract).
      Zhang, Z. G., Du, Y. S., Wu, C. H., et al., 2013. Growth of a Polymetallic Nodule from the Northwestern Continental Margin of the South China Sea and Its Response to Changes in the Paleoceanographical Environment of the Late Cenozoic. Science China Earth Sciences, 56(3): 453-463. https://doi.org/10.1007/s11430-012-4535-8.
      Zhang, Z. G., Fang, N. Q., Du, Y. S., et al., 2009. Geochemical Characteristics and Their Causative Mechanism of Polymetallic Nodules from the Northwest Continental Margin of the South China. Earth Science, 34(6) 955-962(in Chinese with English abstract).
      Zhao, G.T., He, Y.Y., Chen, C., et al., 2011. Comparison of the Mineral and Geochemistry Characteristics between Co-Rich Crusts and Ferromanganese Nodules from the Pacific Ocean. Periodical of Ocean University of China, 41(5): 85-93 (in Chinese with English abstract).
      邓义楠, 任江波, 郭庆军, 等, 2019. 西太平洋深水盆地海水及孔隙水的微量元素地球化学特征. 地球科学, 44(9): 3101-3114. doi: 10.3799/dqkx.2017.562
      韩昌甫, 姚德, 许东禹, 1994. 多金属结核的生长历史. 海洋地质与第四纪地质, 14(4): 33-41.
      何高文, 孙晓明, 杨胜雄, 等, 2011. 太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义. 中国地质, 38(2): 462-472. doi: 10.3969/j.issn.1000-3657.2011.02.020
      姜学钧, 林学辉, 姚德, 等, 2011. 稀土元素在水成型海洋铁锰结壳中的富集特征及机制. 中国科学: 地球科学, 41(2): 197-204. doi: 10.3969/j.issn.1000-3045.2011.02.013
      刘季花, 1992. 太平洋东部深海沉积物稀土元素地球化学. 海洋地质与第四纪地质, 12(2): 35-44.
      任江波, 邓希光, 邓义楠, 等, 2019. 中国富钴结壳合同区海水的稀土元素特征及其意义. 地球科学. 44(10): 3529. doi: 10.3799/dqkx.2018.258
      张振国, 方念乔, 杜远生, 等, 2009. 南海西北陆缘多金属结核地球化学特征及成因. 地球科学, 34(6): 955-962. doi: 10.3321/j.issn:1000-2383.2009.06.010
      赵广涛, 何雨旸, 陈淳, 等, 2011. 太平洋铁锰结核与富Co结壳的矿物地球化学比较研究. 中国海洋大学学报(自然科学版), 41(5): 85-93.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (2652) PDF downloads(129) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return