• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 1
    Jan.  2022
    Turn off MathJax
    Article Contents
    Wang Chunlian, Liu Chenglin, Yu Xiaocan, Wang Jiuyi, Li Ruiqin, Duan Xiaoxu, Liu Sihan, You Chao, Zhou Bowen, 2022. Simulation of Cenozoic Basalt Water-Rock Reaction in Jiangling Depression and Its Indications to Genesis of Potassium-Rich Brine. Earth Science, 47(1): 94-109. doi: 10.3799/dqkx.2021.069
    Citation: Wang Chunlian, Liu Chenglin, Yu Xiaocan, Wang Jiuyi, Li Ruiqin, Duan Xiaoxu, Liu Sihan, You Chao, Zhou Bowen, 2022. Simulation of Cenozoic Basalt Water-Rock Reaction in Jiangling Depression and Its Indications to Genesis of Potassium-Rich Brine. Earth Science, 47(1): 94-109. doi: 10.3799/dqkx.2021.069

    Simulation of Cenozoic Basalt Water-Rock Reaction in Jiangling Depression and Its Indications to Genesis of Potassium-Rich Brine

    doi: 10.3799/dqkx.2021.069
    • Received Date: 2020-12-17
    • Publish Date: 2022-01-20
    • The material source and genesis mechanism of the potassium-rich brine in Jiangling Depression have not yet been ascertained. Mineralogical, petrological, geochemical analyses and water-rock reaction simulation experiments on Cenozoic basalts were carried out in Jiangling Depression, focusing on the effects of time, temperature, and fluid composition on the water-rock reaction. The study shows that the brine has the characteristics of high lithium and low magnesium. It shows that the origin of brine was controlled by volcanic activity. The magma in the study area was differentiated to different degrees, and the basalt alteration was strong, indicating that the subsurface hydrothermal fluid had a strong metasomatism on the basalt in the study area. Basalt provided material source for potassium-rich brine ore through water-rock reaction. Temperature is the main controlling factor of the eluvial capacity of the fluid, and the high salinity fluid is the main carrier of the ore-forming elements. Water-rock reaction is an important process of brine formation.

       

    • loading
    • Batrak, G. I., Galitskaya, I. V., 2013. Experimental Investigation of Brine-Rock Interactions for Groundwater Quality Predictions in Mine Areas. Procedia Earth and Planetary Science, 7: 49-52. https://doi.org/10.1016/j.proeps.2013.03.066
      Huang, C. J., Hinnov, L., 2014. Evolution of an Eocene- Oligocene Saline Lake Depositional System and Its Controlling Factors, Jianghan Basin, China. Journal of Earth Science, 25(6): 959-976. https://doi.org/10.1007/s12583-014-0499-2
      Huang, H., Liu, C.L., Zhang, S.W., et al., 2014. Application of Geophysical Detection Method to Exploration of Deep Potassium Rich Brine Formation: A Case Study of Jiangling Depression. Mineral Deposits, 33(5): 1101-1107 (in Chinese with English abstract).
      Kesler, S. E., Gruber, P. W., Medina, P. A., et al., 2012. Global Lithium Resources: Relative Importance of Pegmatite, Brine and Other Deposits. Ore Geology Reviews, 48: 55-69. https://doi.org/10.1016/j.oregeorev.2012.05.006
      Li, R.Q., Liu, C.L., Chen, X., et al., 2013. Salting Law by Cooling Deep Potassium-Bearing Brine in Jiangling Depression. Journal of Salt Lake Research, 21(1): 1-6 (in Chinese with English abstract).
      Li, R. Q., Liu, C. L., Jiao, P. C., et al., 2018. The Tempo-Spatial Characteristics and Forming Mechanism of Lithium-Rich Brines in China. China Geology, 1(1): 72-83. https://doi.org/10.31035/cg2018009
      Li, R. Q., Liu, C. L., Xu, H. M., et al., 2020. Genesis of Glauberite Sedimentation in Lop Nur Salt Lake- Constraints from Thermodynamic Simulation of the Shallow Groundwater in the Tarim River Basin, China. Chemical Geology, 537: 119461. https://doi.org/10.1016/j.chemgeo.2019.119461
      Liu, C.L., Wang, M.L., Jiao, P.C., et al., 2006. The Exploration Experiences of Potash Deposits in the World and Probing of Countermeasures of China's Future Potash-Deposits Investigation. Geology of Chemical Minerals, 28(1): 1-8 (in Chinese with English abstract).
      Liu, C.L., Yu, X.C., Zhao, Y.J., et al., 2016. A Tentative Discussion on Regional Metallogenic Background and Mineralization Mechanism of Subterranean Brines Rich in Potassium and Lithium in South China Block. Mineral Deposits, 35(6): 1119-1143 (in Chinese with English abstract).
      Liu, X.F., Zheng, M.P., Qi, W., 2007. Sources of Ore-Forming Materials of the Superlarge B and Li Deposit in Zabuye Salt Lake, Tibet, China. Acta Geologica Sinica, 81(12): 1709-1715 (in Chinese with English abstract).
      Liu, J. H., Zhang, P. Z., Lease, R. O., et al., 2013. Eocene Onset and Late Miocene Acceleration of Cenozoic Intracontinental Extension in the North Qinling Range-Weihe Graben: Insights from Apatite Fission Track Thermochronology. Tectonophysics, 584: 281-296. https://doi.org/10.1016/j.tecto.2012.01.025
      Meng, F.W., Liu, C.L., Ni, P., 2012. To Forecast Sylvite Deposits Using the Chemistry of Fluid Inclusions in Halite. Acta Micropalaeontologica Sinica, 29(1): 62-69 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-WSGT201201007.htm
      Meng, F.W., Zhang, Z.L., Zhuo, Q.G., et al., 2018. Direct Geolocal Records of Ancient Environments in the Evaporite Basin: Evidences from Fluid Inclusions in Halite. Bulletin of Mineralogy, Petrology and Geochemistry, 37(3): 451-460, 561 (in Chinese with English abstract).
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-AlkalineVolcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81. https://doi.org/10.1007/bf00384745
      Risacher, F., Alonso, H., Salazar, C., 2003. The Origin of Brines and Salts in Chilean Salars: A Hydrochemical Review. Earth-Science Reviews, 63(3-4): 249-293. https://doi.org/10.1016/s0012-8252(03)00037-0
      Tong, C.G., 1980. Some Characteristics of Petroleum Geology of the Rift System in Eastern China. Acta Petrolei Sinica, 1(4): 19-26 (in Chinese with English abstract).
      Wang, C.L., Huang, H., Wang, J.Y., et al., 2018. Geological Features and Metallogenic Model of K- and Li- Rich Brine Ore Field in the Jiangling Depression. Acta Geologica Sinica, 92(8): 1630-1646 (in Chinese with English abstract).
      Wang, C.L., Liu, C.L., Liu, B.K., et al., 2015. The Discovery of Carnallite in Paleocene Jiangling Depression and Its Potash Searching Significance. Acta Geologica Sinica, 89(1): 129-136 (in Chinese with English abstract).
      Wang, C.L., Liu, C.L., Xu, H.M., et al., 2013a. Homogenization Temperature Study of Salt Inclusions from the Upper Section of Shashi Formation in Jiangling Depression. Acta Petrologica et Mineralogica, 32(3): 383-392 (in Chinese with English abstract).
      Wang, C.L., Liu, C.L., Wang, L.C., et al., 2013b. Reviews on Potash Deposit Metallogenic Conditions. Advances in Earth Science, 28(9): 976-987 (in Chinese with English abstract).
      Wang, C. L., Liu, C. L., Yu, X. C., et al., 2016. The Extremely Hot and Dry Climatic Events and Potash Enrichment in Salt Lakes of the Jiangling Depression, Jianghan Basin. Acta Geologica Sinica (English Edition), 90(2): 769-770. https://doi.org/10.1111/1755-6724.12712
      Wang, C.L., Liu, L.H., Li, Q., et al., 2020. Petrogeochemical Characteristics and Genetic Analysis of the Source Area of Brine Type Lithium-Potassium Ore Sources Area in Jitai Basin of Jiangxi Province. Acta Petrologica et Mineralogica, 39(1): 65-84 (in Chinese with English abstract).
      Wang, C.L., Meng, L.Y., Liu, C.L., et al., 2021. A Study of the Genesis of Paleocene Underground Brine Boron Deposits in Jiangling Depression. Acta Petrologica et Mineralogica, 40(1): 1-13 (in Chinese with English abstract).
      Wang, D.H., Liu, L.J., Dai, H.Z., et al., 2017. Discussion on Particularity and Prospecting Direction of Large and Super-Large Spodumene Deposits. Earth Science, 42(12): 2243-2257 (in Chinese with English abstract).
      Wang, S. L., Zheng, M. P., Liu, X. F., et al., 2013. Distribution of Cambrian Salt-Bearing Basins in China and Its Significance for Halite and Potash Finding. Journal of Earth Science, 24(2): 212-233. https://doi.org/10.1007/s12583-013-0319-0
      Xu, L.X., Yan, C.D., Yu, H.L., et al., 1995. Chronology of Paleogene Volcanic Rocks in Jianghan Basin. Oil & Gas Geology, 16(2): 132-137 (in Chinese with English abstract).
      Xu, W., Xu, X.Y., Lu, J.C., et al., 2019. Geochronology, Petrogenesis and Tectonic Implications of Devonian High-K Acid Magmatic Rocks from Yemajing Area in Beishan Orogen. Earth Science, 44(8): 2775-2793 (in Chinese with English abstract).
      Xu, Y., Liu, C.L., Jiao, P.C., et al., 2017. Geochemical Characteristics and Potash Formation Analysis of Paleocene-Eocene Evaporites in Kuqa Depression of Xinjiang: A Case Study of Borehole KL4. Acta Petrologica et Mineralogica, 36(5): 755-764 (in Chinese with English abstract).
      Xu, Y. G., 2014. Recycled Oceanic Crust in the Source of 90-40 Ma Basalts in North and Northeast China: Evidence, Provenance and Significance. Geochimica et Cosmochimica Acta, 143: 49-67. https://doi.org/10.1016/j.gca.2014.04.045
      Xu, Z., Zheng, Y.F., 2019. Crust-Mantle Interaction in the Paleo-Pacific Subduction Zone: Geochemical Evidence from Cenozoic Continental Basalts in Eastern China. Earth Science, 44(12): 4135-4143 (in Chinese with English abstract).
      Yu, H.L., Yan, C.D., Yu, F.Q., et al., 1996. Geochemical Characteristics and Tectonic Environment of Eogene Basalts of the Jiangling Hollow. Geological Review, 42(S1): 44-51 (in Chinese with English abstract).
      Yu, X. C., Liu, C. L., Wang, C. L., et al., 2021. Origin of Geothermal Waters from the Upper Cretaceous to Lower Eocene Strata of the Jiangling Basin, South China: Constraints by Multi-Isotopic Tracers and Water-Rock Interactions. Applied Geochemistry, 124: 104810. https://doi.org/10.1016/j.apgeochem.2020.104810
      Yu, X. C., Wang, C. L., Liu, C. L., et al., 2015. Sedimentary Characteristics and Depositional Model of a Paleocene-Eocene Salt Lake in the Jiangling Depression, China. Chinese Journal of Oceanology and Limnology, 33(6): 1426-1435. https://doi.org/10.1007/s00343-015-4375-4
      Yu, X.Q., Shu, L.S., Deng, G.H., et al., 2005. Geochemical Features and Tectonic Significance of the Alkali- Basalts from Ji'an-Taihe Basin, Jiangxi Province. Geoscience, 19(1): 133-140 (in Chinese with English abstract).
      Zhang, X.Y., Ma, H.Z., Gao, D.L., et al., 2009. Analysis of Influencing Factors Causing the Changes of Chemical Components of Underground Brine in Mining Area of West Taijinar Salt Lake. Journal of Salt Lake Research, 17(4): 22-26 (in Chinese with English abstract).
      Zeng, F. M., Xiang, S. Y., 2017. Geochronology and Mineral Composition of the Pleistocene Sediments in Xitaijinair Salt Lake Region, Qaidam Basin: Preliminary Results. Journal of Earth Science, 28(4): 622-627. https://doi.org/10.1007/s12583-016-0712-6
      Zhou, X., Cao, Q., Yin, F., et al., 2015. Characteristics of the Brines and Hot Springs in the Triassic Carbonates in the High and Steep Fold Zone of the Eastern Sichuan Basin. Acta Geologica Sinica, 89(11): 1908-1920 (in Chinese with English abstract).
      Zhou, X., Jiang, C.L., Han, J.J., et al., 2013. Some Problems Related to the Evaluation of Subsurface Brine Resources in Deep-Seated Aquifers in Sedimentary Basins. Acta Geoscientica Sinica, 34(5): 610-616 (in Chinese with English abstract).
      Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      黄华, 刘成林, 张士万, 等, 2014. 深层富钾卤水的地球物理探测技术及应用——以江陵凹陷为例. 矿床地质, 33(5): 1101-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201405018.htm
      李瑞琴, 刘成林, 陈侠, 等, 2013. 江陵凹陷深层富钾卤水井内降温析盐情况探讨. 盐湖研究, 21(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201301003.htm
      刘成林, 王弭力, 焦鹏程, 等, 2006. 世界主要古代钾盐找矿实践与中国找钾对策. 化工矿产地质, 28(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC200601000.htm
      刘成林, 余小灿, 赵艳军, 等, 2016. 华南陆块液体钾、锂资源的区域成矿背景与成矿作用初探. 矿床地质, 35(6): 1119-1143. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201606001.htm
      刘喜方, 郑绵平, 齐文, 2007. 西藏扎布耶盐湖超大型B、Li矿床成矿物质来源研究. 地质学报, 81(12): 1709-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200712012.htm
      孟凡巍, 刘成林, 倪培, 2012. 全球古海水化学演化与世界主要海相钾盐沉积关系暨中国海相成钾探讨. 微体古生物学报, 29(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201201007.htm
      孟凡巍, 张智礼, 卓勤功, 等, 2018. 蒸发岩盆地古环境的直接记录: 来自石盐流体包裹体的证据. 矿物岩石地球化学通报, 37(3): 451-460, 561. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803006.htm
      童崇光, 1980. 中国东部裂谷系盆地的石油地质特征. 石油学报, 1(4): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198004001.htm
      王春连, 黄华, 王九一, 等, 2018. 江陵凹陷富钾锂卤水矿田地质特征及成藏模式研究. 地质学报, 92(8): 1630-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201808007.htm
      王春连, 刘成林, 刘宝坤, 等, 2015. 江陵凹陷古新统光卤石的发现及其钾盐找矿意义. 地质学报, 89(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501010.htm
      王春连, 刘成林, 徐海明, 等, 2013a. 江陵凹陷沙市组上段石盐包裹体测温学研究. 岩石矿物学杂志, 32(3): 383-392. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201303011.htm
      王春连, 刘成林, 王立成, 等, 2013b. 钾盐矿床成矿条件研究若干进展. 地球科学进展, 28(9): 976-987. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201309003.htm
      王春连, 刘丽红, 李强, 等, 2020. 江西吉泰盆地卤水型锂钾矿物源区岩石地球化学特征及成因分析. 岩石矿物学杂志, 39(1): 65-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202001005.htm
      王春连, 孟令阳, 刘成林, 等, 2021. 江陵凹陷古新世地下卤水型硼矿成因研究. 岩石矿物学杂志, 40(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202101002.htm
      王登红, 刘丽君, 代鸿章, 等, 2017. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向. 地球科学, 42(12): 2243-2257. doi: 10.3799/dqkx.2017.142
      徐论勋, 阎春德, 俞惠隆, 等, 1995. 江汉盆地下第三系火山岩年代. 石油与天然气地质, 16(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT502.005.htm
      许伟, 徐学义, 卢进才, 等, 2019. 北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义. 地球科学, 44(8): 2775-2793. doi: 10.3799/dqkx.2019.048
      徐洋, 刘成林, 焦鹏程, 等, 2017. 塔里木盆地库车坳陷古新统—始新统蒸发岩地球化学特征及成钾分析: 以KL4井为例. 岩石矿物学杂志, 36(5): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201705016.htm
      徐峥, 郑永飞, 2019. 中国东部新生代玄武岩记录古太平洋俯冲带壳幔相互作用. 地球科学, 44(12): 4135-4143. doi: 10.3799/dqkx.2019.273
      俞惠隆, 阎春德, 余芳权, 等, 1996. 江陵凹陷早第三纪玄武岩的地球化学特征与成岩构造环境. 地质论评, 42(S1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1996S1007.htm
      余心起, 舒良树, 邓国辉, 等, 2005. 江西吉泰盆地碱性玄武岩的地球化学特征及其构造意义. 现代地质, 19(1): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ20050100J.htm
      张西营, 马海州, 高东林, 等, 2009. 西台吉乃尔盐湖矿区地下卤水化学组分变化的影响因素分析. 盐湖研究, 17(4): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200904006.htm
      周训, 曹琴, 尹菲, 等, 2015. 四川盆地东部高褶带三叠系地层卤水和温泉的地球化学特征及成因. 地质学报, 89(11): 1908-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511003.htm
      周训, 姜长龙, 韩佳君, 等, 2013. 沉积盆地深层地下卤水资源量评价之若干探讨. 地球学报, 34(5): 610-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201305014.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(17)  / Tables(2)

      Article views (1821) PDF downloads(192) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return