• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Chen Yingying, Li Yiquan, Wei Dongtao, Mao Yuqiong, Wang Xianyan, 2022. Quantitative Relationship between Tectonic Deformation and Topography in Bogda Piedmont of Eastern Tianshan Mountains: Based on 3D Structural Modeling and Geomorphic Analysis. Earth Science, 47(2): 418-436. doi: 10.3799/dqkx.2021.097
    Citation: Chen Yingying, Li Yiquan, Wei Dongtao, Mao Yuqiong, Wang Xianyan, 2022. Quantitative Relationship between Tectonic Deformation and Topography in Bogda Piedmont of Eastern Tianshan Mountains: Based on 3D Structural Modeling and Geomorphic Analysis. Earth Science, 47(2): 418-436. doi: 10.3799/dqkx.2021.097

    Quantitative Relationship between Tectonic Deformation and Topography in Bogda Piedmont of Eastern Tianshan Mountains: Based on 3D Structural Modeling and Geomorphic Analysis

    doi: 10.3799/dqkx.2021.097
    • Received Date: 2021-05-23
    • Publish Date: 2022-02-25
    • The specific neotectonic activities, spatial variations of erosion rates in Tianshan Mountains are led by the far-field effect of the India-Asia collision and variable precipitations. It is an ideal place to discuss the interaction of tectonic, surface processes and climatic change. The relationship of the amount of fault slip and topographic relief in this area might provide clues for understanding the interaction between tectonic and climate, and resulted topography. In this study, the subsurface three-dimensional structural geometry model of a fault-related anticline (Gumudi) at the western fault zone (Fukang) at the eastern Tianshan Mountains was constructed by the interpretation of the 3D seismic reflection data in depth. It shows that the dip of the fault is about 40°-50°, and fault-propagation folds developed. The tectonic deformation of this fault originated from the central zone and gradually propagated to the east and west ends. The amounts of the fault slip and the topographic relief at different areas were calculated from the subsurface three-dimensional tectonic structural geometry. The results show that the topographic relief (△H) is linearly related to the amount of fault slip (Sl). The maximum denudation, the maximum shortening, and the denudation rate are deduced to be as about 5.05 km, 9.20 km, and 0.38-0.60 mm/a, respectively, in the central area of the Fukang fault zone, which is based on the linear relationship between the faultslipandthetopographic relief. In addition, it presents a similar relationship that △H was equal to 1/10 Sl at different areas in spite of quite various dip angles of faults. This indicates that the relict topography is mainly controlled by the dynamic balance of the tectonic activities and erosion of the orogenic wedge rather than the magnitudes of the fault dip in this area.

       

    • loading
    • Allmendinger, R. W., 1998. Inverse and Forward Numerical Modeling of Trishear Fault-Propagation Folds. Tectonics, 17(4): 640-656. https://doi.org/10.1029/98tc01907
      Avouac, J. P., Burov, E. B., 1996. Erosion as a Driving Mechanism of Intracontinental Mountain Growth. Journal of Geophysical Research: Solid Earth, 101(B8): 17747-17769. https://doi.org/10.1029/96jb01344
      Avouac, J. P., Tapponnier, P., Bai, M., et al., 1993. Active Thrusting and Folding along the Northern Tien Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan. Journal of Geophysical Research: Solid Earth, 98(B4): 6755-6804. https://doi.org/10.1029/92jb01963
      Bagha, N., Arian, M., Ghorashi, M., et al., 2014. Evaluation of Relative Tectonic Activity in the Tehran Basin, Central Alborz, Northern Iran. Geomorphology, 213(5): 66-87. https://doi.org/10.1016/j.geomorph.2013.12.041
      Braun, J., 2002. Quantifying the Effect of Recent Relief Changes on Age-Elevation Relationships. Earth and Planetary Science Letters, 200(3/4): 331-343. https://doi.org/10.1016/s0012-821x(02)00638-6
      Bretis, B., Bartl, N., Grasemann, B., 2011. Lateral Fold Growth and Linkage in the Zagros Fold and Thrust Belt (Kurdistan, NE Iraq). Basin Research, 23(6): 615-630. https://doi.org/10.1111/j.1365-2117.2011.00506.x
      Brozovi, N., Burbank, D. W., Meigs, J.A., et al., 1997. Climatic Limits on Landscape Development in the Northwestern Himalaya. Science, 276(5312): 571-574. https://doi.org/10.1126/science.276.5312.571
      Burchfiel, B. C., Brown, E. T., Deng, Q. D., et al., 1999. Crustal Shortening on the Margins of the Tien Shan, Xinjiang, China. International Geology Review, 41(8): 665-700. https://doi.org/10.1080/00206819909465164
      Champagnac, J. D., Molnar, P., Sue, C., et al., 2012. Tectonics, Climate, and Mountain Topography. Journal of Geophysical Research: Solid Earth, 117(B2): B02403. https://doi.org/10.1029/2011jb008348
      Chapple, W. M., 1978. Mechanics of Thin-Skinned Fold-and-Thrust Belts. Geological Society of America Bulletin, 89(8): 1189-1198. https://doi.org/10.1130/0016-7606(1978)89<1189:MOTFB>2.0.CO;2 doi: 10.1130/0016-7606(1978)89<1189:MOTFB>2.0.CO;2
      Davis, D., Suppe, J., Dahlen, F. A., 1983. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research, 88(B2): 1153. https://doi.org/10.1029/jb088ib02p01153
      Deng, Q.D., Feng, X.Y., Zhang, P.Z., et al., 2000. Active Structure of Tianshan Mountains. Seismological Press, Beijing (in Chinese).
      Dielforder, A., Hetzel, R., Oncken, O., 2020. Megathrust Shear Force Controls Mountain Height at Convergent Plate Margins. Nature, 582(7811): 225-229. https://doi.org/10.1038/s41586-020-2340-7
      Egholm, D. L., Nielsen, S. B., Pedersen, V. K., et al., 2009. Glacial Effects Limiting Mountain Height. Nature, 460(7257): 884-887. https://doi.org/10.1038/nature08263
      England, P., Molnar, P., 1990. Surface Uplift, Uplift of Rocks, and Exhumation of Rocks. Geology, 18(12): 1173. https://doi.org/10.1130/0091-7613(1990)018<1173:suuora>2.3.co;2 doi: 10.1130/0091-7613(1990)018<1173:suuora>2.3.co;2
      Erslev, E. A., 1991. Trishear Fault-Propagation Folding. Geology, 19(6): 617. https://doi.org/10.1130/0091-7613(1991)019<0617:tfpf>2.3.co;2 doi: 10.1130/0091-7613(1991)019<0617:tfpf>2.3.co;2
      Fu, B. H., Lin, A. M., Kano, K. I., et al., 2003. Quaternary Folding of the Eastern Tian Shan, Northwest China. Tectonophysics, 369(1/2): 79-101. https://doi.org/10.1016/s0040-1951(03)00137-9
      Gao, Z. B., Tian, W., Wang, L., et al., 2017. Emplacement of Intrusions of the Tarim Flood Basalt Province and their Impacts on Oil and Gas Reservoirs: A 3D Seismic Reflection Study in Yingmaili Fields, Tarim Basin, Northwest China. Interpretation, 5(3): SK51-SK63. https://doi.org/10.1190/int-2016-0165.1
      Grasemann, B., Schmalholz, S. M., 2012. Lateral Fold Growth and Fold Linkage. Geology, 40(11): 1039-1042. https://doi.org/10.1130/g33613.1
      Hardy, S., Poblet, J., 2005. A Method for Relating Fault Geometry, Slip Rate and Uplift Data above Fault-Propagation Folds. Basin Research, 17(3): 417-424. https://doi.org/10.1111/j.1365-2117.2005.00268.x
      He, C. Q., Yang, C. J., Turowski, J. M., et al., 2021. Constraining Tectonic Uplift and Advection from the Main Drainage Divide of a Mountain Belt. Nature Communications, 12(1): 1-10. https://doi.org/10.1038/s41467-020-20748-2
      Hendrix, M. S., Dumitru, T. A., Graham, S. A., 1994. Late Oligocene-Early Miocene Unroofing in the Chinese Tian Shan: An Early Effect of the India-Asia Collision. Geology, 22(6): 487. https://doi.org/10.1130/0091-7613(1994)022<0487:loemui>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0487:loemui>2.3.co;2
      Hubbard, J., Shaw, J. H., 2009. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M=7.9) Earthquake. Nature, 458(7235): 194-197. https://doi.org/10.1038/nature07837
      Hubbard, J., Shaw, J. H., Klinger, Y., 2010. Structural Setting of the 2008 Mw 7.9 Wenchuan, China, Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2713-2735. https://doi.org/10.1785/0120090341
      Hughes, A. N., Shaw, J. H., 2014. Fault Displacement-Distance Relationships as Indicators of Contractional Fault-Related Folding Style. AAPG Bulletin, 98(2): 227-251. https://doi.org/10.1306/05311312006
      Hughes, A. N., Shaw, J. H., 2015. Insights into the Mechanics of Fault-Propagation Folding Styles. Geological Society of America Bulletin, 127(11/12): 1752-1765. https://doi.org/10.1130/b31215.1
      Kirby, E., Whipple, K. X., Tang, W. Q., et al., 2003. Distribution of Active Rock Uplift along the Eastern Margin of the Tibetan Plateau: Inferences from Bedrock Channel Longitudinal Profiles. Journal of Geophysical Research: Solid Earth, 108(B4): 2217. https://doi.org/10.1029/2001jb000861
      Kirkpatrick, J. D., Edwards, J. H., Verdecchia, A., et al., 2020. Subduction Megathrust Heterogeneity Characterized from 3D Seismic Data. Nature Geoscience, 13(5): 369-374. https://doi.org/10.1038/s41561-020-0562-9
      Lamb, S., 2006. Shear Stresses on Megathrusts: Implications for Mountain Building Behind Subduction Zones. Journal of Geophysical Research, 111(B7): B07401. https://doi.org/10.1029/2005jb003916
      Lee, W. H., Wu, F., Jacobsen, C., 1976. A Catalog of Historical Earthquakes in China Compiled from Recent Chinese Publications. Bulletin of the Seismological Society of America, 66(6): 2003-2016. doi: 10.1785/BSSA0660062003
      Li, G.W., 2021. A Brief Review of Several Issues on Tectonic Geomorphology and Low Temperature Thermochronology Applications. Acta Geologica Sinica, 95(1): 214-226 (in Chinese with English abstract).
      Li, J.Y., Wang, K.Z., Li, Y.P., et al., 2006. Geomorphological Features, Crustal Composition and Geological Evolution of the Tianshan Mountains. Geological Bulletin of China, 25(8): 895-909 (in Chinese with English abstract).
      Li, X.Y., Liu, L.J., Chen, W., 2004. Analysis of Structural Model of Gumudi Anticline in Southern Margin of Junggar Basin. Xinjiang Petroleum Geology, 25(02): 141-142 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200402007.htm
      Li, Y. Q., Wei, D. T., Chen, Z. X., et al., 2016. Multiphase Deformation Deduced from 3D Construction and Restoration: Implication for the Hydrocarbon Exploration in the Mountain Front of the Northern Tianshan. Marine and Petroleum Geology, 77(B4): 916-930. https://doi.org/10.1016/j.marpetgeo.2016.07.028
      Li, Y. Q., Wei, D. T., Tian, H., et al., 2018. The 3-D Structural Model of an Out-of-Sequence Earthquake in China: Implication for the Reactivation of Positive Inversion Structures along the Northern Tianshan Fold-and-Thrust Belt. Tectonics, 37(12): 4359-4376. https://doi.org/10.1029/2018tc005075
      Liu, L.J., Chen, W., 2002. Geometric and Kinematic Characteristics of Thick and Thin Skin Nappe Structures in the Piedmont of the Northern Tianshan Mountains. Natural Gas Industry, 22(5): 104-105 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=6856810
      Lu, H. H., Li, B. J., Wu, D. Y., et al., 2019. Spatiotemporal Patterns of the Late Quaternary Deformation Across the Northern Chinese Tian Shan Foreland. Earth-Science Reviews, 194(2): 19-37. https://doi.org/10.1016/j.earscirev.2019.04.026
      Lu, H. H., Wu, D. Y., Cheng, L., et al., 2017. Late Quaternary Drainage Evolution in Response to Fold Growth in the Northern Chinese Tian Shan Foreland. Geomorphology, 299(2): 12-23. https://doi.org/10.1016/j.geomorph.2017.09.037
      Lü, H.H., Wang, W., Chang, Y., et al., 2013. Cenozoic Episodic Exhumation of the Tian Shan Range, NW China. Quaternary Sciences, 33(4): 812-822 (in Chinese with English abstract).
      Ma, D.L., He, D.F., Wei, D.T., et al., 2017. Multiple Phase Deformation of Gumudi Anticline at South Margin of Junggar Basin. Journal of Jilin University (Earth Science Edition), 47(6): 1695-1704 (in Chinese with English abstract). http://www.researchgate.net/publication/322919764_Multiple_Phase_Deformation_of_Gumudi_Anticline_at_South_Margin_of_Junggar_Basin
      Ma, Q.Y., 2006. The Tectonic Charaeteristics of Bogeda Mountain and Its Orogeny at Mesozoie-Cenozoic Time(Dissertation). China University of Geoscienees (Beijing), Beijing (in Chinese with English abstract).
      Martinez, J., Cartwright, J., Hall, B., 2005.3D Seismic Interpretation of Slump Complexes: Examples from the Continental Margin of Israel. Basin Research, 17(1): 83-108. https://doi.org/10.1111/j.1365-2117.2005.00255.x
      Molnar, P., England, P., 1990. Late Cenozoic Uplift of Mountain Ranges and Global Climate Change: Chicken or Egg? Nature, 346(6279): 29-34. https://doi.org/10.1038/346029a0
      Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419
      Oyedele, K., Ogagarue, D., Mohammed, D., 2013. Integration of 3D Seismic and Well Log Data in the Optimal Reservoir Characterisation of EMI Field, Offshore Niger Delta Oil Province, Nigeria. American Journal of Scientific and Industrial Research, 4(1): 11-21. https://doi.org/10.5251/ajsir.2013.4.1.11.21
      Qiu, J. H., Rao, G., Wang, X., et al., 2019. Effects of Fault Slip Distribution on the Geometry and Kinematics of the Southern Junggar Fold-and-Thrust Belt, Northern Tian Shan. Tectonophysics, 772(7-8): 228209. https://doi.org/10.1016/j.tecto.2019.228209
      Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34(1): 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202
      Shang, L., Dai, J.S., Feng, J.W., et al., 2013. Geometric and Kinematic Analyses of Gumudi Anticline in Southern Margin of Junggar Basin. Xinjiang Petroleum Geology, 34(6): 627-631+617 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201306004.htm
      Shaw, J. H., Connors, C. D., Suppe, J., 2005. Seismic Interpretation of Contractional Fault-Related Folds: An AAPG Seismic Atlas, American Association of Petroleum Geologists Tulsa, Oklahoma, U.S.A.
      Shaw, J. H., Novoa, E., Connors, C. D., 2004. Structural Controls on Growth Stratigraphy in Contractional Fault-Related Folds. AAPG MEMOIR, 82: 400-412. http://www.osti.gov/cgi-bin/eprints/redirectEprintsUrl?http%3A%2F%2Fgeology.wlu.edu%2Fconnors%2Fpublications%2FShaw_AAPG_Mem82.PDF
      Shen, C.B., Mei, L.F., Liu, L., et al., 2006. Evidence from Apatite and Zircon Fission Track Analysis for Mesozoic-Cenozoic Uplift Thermal History of Bogda Mountain of Xinjiang, Northwest China. Marine Geology & Quaternary Geology, 26(3): 87-92 (in Chinese with English abstract). http://www.researchgate.net/publication/284072548_Evidence_from_apatite_and_zircon_fission_track_analysis_for_Mesozoic-Cenozoic_uplift_thermal_history_of_Bogda_Mountain_of_Xinjiang_northwest_China
      Suppe, J., 1983. Geometry and Kinematics of Fault-Bend Folding. American Journal of Science, 283(7): 684-721. https://doi.org/10.2475/ajs.283.7.684
      Suppe, J., 1990. Geometry and Kinematics of Fault-Bend Folding. American Journal of Science, 283(7): 684-721. https://doi.org/10.2475/ajs.283.7.684
      Wang, G.C., Shen, T.Y., Chen, C., et al., 2020. Basin-Range Coupling and Tectonic Topography Analysis during Geological Mapping on Covered Area: A Case Study of Turpan-Hami Basin, Eastern Tianshan. Earth Science, 45(12): 4313-4331 (in Chinese with English abstract).
      Wang, T., Huang, H., Song, P., et al., 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344 (in Chinese with English abstract).
      Wang, X.W., Wang, X.W., Ma, Y.S., 2007. Differential Exhumation History of Bogda Mountain, Xinjiang, Northwestern China Since the Late Mesozoic. Acta Geologica Sinica, 81(11): 1507-1517 (in Chinese with English abstract).
      Wang, Z.X., Li, T., Zhang, J., et al., 2008. The Uplifting Proces of the Bogda Mountain during the Cenozoic and Its Tectonic Implication. Science in China (Series D), 38(3): 312-326 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=4000159026
      Whipple, K. X., 2009. The Influence of Climate on the Tectonic Evolution of Mountain Belts. Nature Geoscience, 2(2): 97-104. https://doi.org/10.1038/ngeo413
      Whipple, K. X., 2014. Can Erosion Drive Tectonics? Science, 346(6212): 918-919. https://doi.org/10.1126/science.aaa0887
      Whipple, K. X., Kirby, E., Brocklehurst, S. H., 1999. Geomorphic Limits to Climate-Induced Increases in Topographic Relief. Nature, 401(6748): 39-43. https://doi.org/10.1038/43375
      Whipple, K. X., Meade, B. J., 2004. Controls on the Strength of Coupling among Climate, Erosion, and Deformation in Two-Sided, Frictional Orogenic Wedges at Steady State. Journal of Geophysical Research: Earth Surface, 109(F1): 11. https://doi.org/10.1029/2003jf000019
      Willett, S. D., 1999. Orogeny and Orography: The Effects of Erosion on the Structure of Mountain Belts. Journal of Geophysical Research: Solid Earth, 104(B12): 28957-28981. https://doi.org/10.1029/1999jb900248
      Willett, S. D., 2006. Tectonics, Climate, and Landscape Evolution. Special Paper of the Geological Society of America, New York.
      Willett, S. D., Slingerland, R., Hovius, N., 2001. Uplift, Shortening, and Steady State Topography in Active Mountain Belts. American Journal of Science, 301(4/5): 455-485. https://doi.org/10.2475/ajs.301.4-5.455
      Wu, C. Y., Wu, G. D., Shen, J., et al., 2016. Late Quaternary Tectonic Activity and Crustal Shortening Rate of the Bogda Mountain Area, Eastern Tian Shan, China. Journal of Asian Earth Sciences, 119(6608): 20-29. https://doi.org/10.1016/j.jseaes.2016.01.001
      Wu, C.Y., Chen, J.B., Shen, J., et al., 2014. Late-Quaternary Activity Characteristics of the Ganhezi Segment of the Fukang Fault Belt, in Xinjiang. Earth Science, 22(3): 632-640 (in Chinese with English abstract).
      Wu, C.Y., Shen, J., Shi, J., et al., 2010. Late-Quaternary Activity of the Gumudi Fault of the South Fukang Fault Belt on the North Margin of the Bogda Mountains in the Xinjiang Automonous Region. Quaternary Sciences, 30(5): 1020-1029 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DSJJ201005023.htm
      Xiang, Z.Y., Shen, J., Li, J., et al., 2009. Characteristics and Latest Activity Age Issue of Yamalike Fault in Urumqi. Inland Earthquake, 23(2): 215-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LLDZ200902015.htm
      Yang, R., 2017. A Brief Review of Several Model of Topographic Evolution. Seismology and Geology, 39(6): 1173-1184 (in Chinese with English abstract). http://www.researchgate.net/publication/327514363_A_brief_review_of_several_models_of_topographic_evolution
      Yang, S.M., Li, J., Wang, Q., 2008. GPS Study of Current Deformation and Fault Activity in Tianshan Mountains. Science in China (Series D), 38(7): 872-880 (in Chinese). http://gji.oxfordjournals.org/external-ref?access_num=10.1007/s11430-008-0090-8&link_type=DOI
      Yin, G.H., 1993. Neotectonic Movement and Earthquakes in Ili Depression Basin. Inland Earthquake, 7(2): 180-187 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LLDZ199302013.htm
      You, H.C., Ren, L.S., Chen, G.X., et al., 2002. Activity Forms and Slip Rates of Fukang Fault. Earthquake Research in China, 18(3): 239-248 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZGZD200203002&dbcode=CJFD&year=2002&dflag=pdfdown
      Yuan, Q.D., Guo, Z.J., Zhang, Z.C., et al., 2006. The Late Cenozoic Deformation of Terraces on the North Flank of Tianshan Mt. and the Tectonic Evolution. Acta Geologica Sinica, 80(2): 210-216 (in Chinese with English abstract). http://www.researchgate.net/publication/291851940_The_late_Cenozoic_deformation_of_terraces_on_the_north_flank_of_Tianshan_Mt_and_the_tectonic_evolution
      Zhang, P.Z., Deng, Q.D., Xu, X.W., et al., 1994. Blind Thrust, Folding Earthquake, and the 1906 Manas Earthquake, Xinjiang. Seismology and Geology, 16(3): 193-204 (in Chinese with English abstract).
      Zhang, P.Z., Wang, Q., Ma, Z.J., 2002. GPS Velocity Field and Active Crustal Blocks of Contemporary Tectonic Deformation Continental China. Earth Science Frontiers, 9(2): 430-441 (in Chinese).
      Zhou, Y. X., Wu, C. D., Yuan, B., et al., 2020. Cenozoic Tectonic Patterns and their Controls on Growth Strata in the Northern Tianshan Fold and Thrust Belt, Northwest China. Journal of Asian Earth Sciences, 198(4): 104237. https://doi.org/10.1016/j.jseaes.2020.104237
      Zhu, W.B., Shu, L.S., Wan, J.L., et al., 2006. Fission-Track Evidence for the Exhumation History of Bogda-Harlik Mountains, Xinjiang Since the Cretaceous. Acta Geologica Sinica, 80(1): 16-22 (in Chinese with English abstract).
      邓起东, 冯先岳, 张培震, 等, 2000. 天山活动构造, 北京: 地震出版社.
      李锦轶, 王克卓, 李亚萍, 等, 2006. 天山山脉地貌特征、地壳组成与地质演化. 地质通报, 25(8): 895-909. doi: 10.3969/j.issn.1671-2552.2006.08.001
      李广伟, 2021. 构造地貌与低温热年代学若干问题探讨. 地质学报, 95(1): 214-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202101015.htm
      李学义, 刘楼军, 陈伟, 2004. 准噶尔盆地南缘古牧地构造建模分析. 新疆石油地质, 25(2): 141-142. doi: 10.3969/j.issn.1001-3873.2004.02.008
      刘楼军, 陈伟, 2002. 北天山山前带厚皮与薄皮推覆构造的几何学运动学特征. 天然气工业, 22(5): 104-105. doi: 10.3321/j.issn:1000-0976.2002.05.031
      吕红华, 王玮, 常远, 等, 2013. 新疆天山造山带新生代多期次剥露作用过程. 第四纪研究, 33(4): 812-822. doi: 10.3969/j.issn.1001-7410.2013.04.17
      马德龙, 何登发, 魏东涛, 等, 2017. 准噶尔盆地南缘古牧地背斜多期构造变形特征. 吉林大学学报(地球科学版), 47(6): 1695-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201706009.htm
      马庆佑, 2006. 新疆博格达山的构造特征与中-新生代的造山活动(博士毕业论文). 北京: 中国地质大学(北京).
      商琳, 戴俊生, 冯建伟, 等, 2013. 准噶尔盆地南缘古牧地背斜几何学与运动学分析. 新疆石油地质, 34(6): 627-631+617. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201306004.htm
      沈传波, 梅廉夫, 刘麟, 等, 2006. 新疆博格达山中新生代隆升-热历史的裂变径迹记录. 海洋地质与第四纪地质, 26(3): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200603013.htm
      汪新伟, 汪新文, 马永生, 2007. 新疆博格达山晚中生代以来的差异剥露史. 地质学报, 81(11): 1507-1517. doi: 10.3321/j.issn:0001-5717.2007.11.005
      王宗秀, 李涛, 张进, 等, 2008. 博格达山链新生代抬升过程及意义. 中国科学: 地球科学, 38(3): 312-326. doi: 10.3321/j.issn:1006-9267.2008.03.005
      王国灿, 申添毅, 陈超, 等, 2020. 覆盖区地质调查中的盆山构造地貌关系研究: 以东天山-吐哈盆地为例. 地球科学, 45(12): 4313-4331. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012004.htm
      王涛, 黄河, 宋鹏, 等, 2020. 地壳生长及深部物质架构研究与问题: 以中亚造山带(北疆地区)为例. 地球科学, 45(7): 2326-2344. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202007010.htm
      吴传勇, 陈建波, 沈军, 等, 2014. 新疆阜康断裂带甘河子段晚第四纪活动特征. 地球科学, 22(3): 632-640. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201303023.htm
      吴传勇, 沈军, 史杰, 等, 2010. 新疆博格达山北缘阜康南断裂带古牧地段晚第四纪活动特征. 第四纪研究, 30(5): 1020-1029. doi: 10.3969/j.issn.1001-7410.2010.05.20
      向志勇, 沈军, 李军, 等, 2009. 乌鲁木齐市雅玛里克断裂特征与最新活动时代问题. 内陆地震, 23(2): 215-225. doi: 10.3969/j.issn.1001-8956.2009.02.016
      杨蓉, 2017. 几种地形演化的数值模拟模型简述. 地震地质, 39(6): 1173-1184. doi: 10.3969/j.issn.0253-4967.2017.06.006
      杨少敏, 李杰, 王琪, 2008. GPS研究天山现今变形与断层活动. 中国科学D辑: 地球科学, 38(7): 872-880. doi: 10.3321/j.issn:1006-9267.2008.07.009
      尹光华, 1993. 伊犁盆地新构造运动与地震. 内陆地震, 7(2): 180-187. https://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ199302013.htm
      尤惠川, 任利生, 陈国星, 等, 2002. 东天山阜康断裂的变形方式与全新世滑动速率. 中国地震, 18(3): 239-248. doi: 10.3969/j.issn.1001-4683.2002.03.003
      袁庆东, 郭召杰, 张志诚, 等, 2006. 天山北缘河流阶地形成及构造变形定量分析. 地质学报, 80(2): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200602006.htm
      张培震, 邓起东, 徐锡伟, 等, 1994. 盲断裂, 褶皱地震与新疆1906年玛纳斯地震. 地震地质, 16(3): 193-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ403.000.htm
      张培震, 王琪, 马宗晋, 2002. 中国大陆现今构造运动的GPS速度场与活动地块. 地学前缘, 9(2): 430-441. doi: 10.3321/j.issn:1005-2321.2002.02.022
      朱文斌, 舒良树, 万景林, 等, 2006. 新疆博格达——哈尔里克山白垩纪以来剥露历史的裂变径迹证据. 地质学报, 80(1): 16-22. doi: 10.3321/j.issn:0001-5717.2006.01.002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(1)

      Article views (1804) PDF downloads(161) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return