• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 6
    Jun.  2022
    Turn off MathJax
    Article Contents
    Lin Hai, Chen Xinwen, Zeng Yifan, 2022. Experimental Study on Effect of Temperature on Geo-Mechanical Properties of Geomembrane. Earth Science, 47(6): 2165-2174. doi: 10.3799/dqkx.2021.103
    Citation: Lin Hai, Chen Xinwen, Zeng Yifan, 2022. Experimental Study on Effect of Temperature on Geo-Mechanical Properties of Geomembrane. Earth Science, 47(6): 2165-2174. doi: 10.3799/dqkx.2021.103

    Experimental Study on Effect of Temperature on Geo-Mechanical Properties of Geomembrane

    doi: 10.3799/dqkx.2021.103
    • Received Date: 2021-04-14
    • Publish Date: 2022-06-25
    • HDPE geomembrane (GM) may be in high temperature condition in environmental protection projects such as urban sanitary landfill. Most of the existing experimental studies on the mechanical properties of GM were carried out at normal temperature, the temperature effect of the mechanical properties of GM relates to in-site slope stability and engineering safety. The temperature-controlled tensile tests of GM, interface shear tests of GM/sand interface and GM / non-woven geotextile (GT) interface under different temperature conditions were carried out to reveal the influence of temperature on the geo-mechanical properties of GM. Qualitative and quantitative effects of temperature on the geo-mechanical properties are revealed through comparative analysis of the tensile properties of GM and the shear properties of GM interface under different temperature conditions. The test results show that the tensile strength of GM changes significantly with temperature, and the tensile strength obtained at high temperature (above 70 ℃) can be reduced by nearly 80% compared with the normal temperature situation. The effect of temperature on the shear properties of GM/GT interface is obviously greater than that of GM/sand interface, and the temperature effect of GM geo-mechanical properties deserve more attention of engineers.

       

    • loading
    • Abdelaal, F. B., Rowe, R. K., Hsuan, Y. G., et al., 2015. Effect of High Temperatures on the Physical and Mechanical Properties of HDPE Geomembranes in Air. Geosynthetics International, 22(3): 207. https://doi.org/10.1680/gein.15.00006
      Akpinar, M. V., Benson, C. H., 2005. Effect of Temperature on Shear Strength of Two Geomembrane-Geotextile Interfaces. Geotextiles and Geomembranes, 23(5): 443-453. https://doi.org/10.1016/j.geotexmem.2005.02.004
      Bacas, B. M., Cañizal, J., Konietzky, H., 2015. Shear Strength Behavior of Geotextile/Geomembrane Interfaces. Journal of Rock Mechanics and Geotechnical Engineering, 7(6): 638-645. https://doi.org/10.1016/j.jrmge.2015.08.001
      Bao, C. G., 2006. Study on Interface Behavior of Geosynthetics and Soil. Chinese Journal of Rock Mechanics and Engineering, 25(9): 1735-1744(in Chinese with English abstrac).
      Calder, G. V., Stark, T. D., 2010. Aluminum Reactions and Problems in Municipal Solid Waste Landfills. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 14(4): 258-265. https://doi.org/10.1061/(asce)hz.1944-8376.0000045
      Chappel, M. J., Rowe, R. K., Brachman, R., et al., 2012. A Comparison of Geomembrane Wrinkles for Nine Field Cases. Geosynthetics International, 19(6): 453-469. https://doi.org/10.1680/gein.12.00030
      Fairbrother, A., Hsueh, H. C., Kim, J. H., et al., 2019. Temperature and Light Intensity Effects on Photodegradation of High-Density Polyethylene. Polymer Degradation and Stability, 165: 153-160. https://doi.org/10.1016/j.polymdegradstab.2019.05.002.
      Feng, S. J., Gao, L. Y., Wang, Y., 2008. Analysis of Tension of Geomembranes Placed on Landfill Slopes. Chinese Journal of Geotechnical Engineering, 30(10): 1484-1489(in Chinese with English abstract)
      Fox, P. J., Stark, T. D., 2004. State-of-the-Art Report: GCL Shear Strength and Its Measurement. Geosynthetics International, 11(3): 141-175. https://doi.org/10.1680/gein.2004.11.3.141
      Hanson, J. L., Chrysovergis, T. S., Yesiller, N., et al., 2015. Temperature and Moisture Effects on GCL and Textured Geomembrane Interface Shear Strength. Geosynthetics International, 22(1): 110-124. https://doi.org/10.1680/gein.14.00035
      He, C., Tang, H. M., Shen, P. W., et al, 2021. Progressive Failure Mode and Stability Reliability of Strain-Softening Slope. Earth Science, 46(2): 697-707(in Chinese with English abstract)
      Koerner, G. R., Koerner, R. M., 2006. Long-Term Temperature Monitoring of Geomembranes at Dry and Wet Landfills. Geotextiles and Geomembranes, 24(1): 72-77. https://doi.org/10.1016/j.geotexmem.2004.11.003
      Li, L., Fall, M., Fang, K., 2020. Shear Behavior at Interface between Compacted Clay Liner-Geomembrane under Freeze-Thaw Cycles. Cold Regions Science and Technology, 172: 103006. https://doi.org/10.1016/j.coldregions.2020.103006
      Listyarini, S., 2017. Designing Heap Leaching for Nickel Production that Environmentally and Economically Sustain. International Journal of Environmental Science and Development, 8(12): 799-803. https://doi.org/10.18178/ijesd.2017.8.12.1060
      Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its Indicating Significance. Earth Science, 45(6): 2221-2231(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.270
      Martin, J. W., Stark, T. D., Thalhamer, T., et al., 2013. Detection of Aluminum Waste Reactions and Waste Fires. Journal of Hazardous, Toxic, and Radioactive Waste, 17(3): 164-174. https://doi.org/10.1061/(asce)hz.2153-5515.0000171
      Morsy, M. S., Rowe, R. K., 2020. Effect of Texturing on the Longevity of High-Density Polyethylene (HDPE) Geomembranes in Municipal Solid Waste Landfills. Canadian Geotechnical Journal, 57: 61-72. https://doi.org/10.1139/cgj-2019-0047
      Qian, X. D, Shi, J. Y., Liu, X. D., 2011. Design and Construction of Modern Sanitary Landfills. China Architecture and Building Press, Beijing(in Chinese).
      Rodriguez, E. L., Filisko, F. E., 1987. Thermal Effects in High Density Polyethylene and Low Density Polyethylene at High Hydrostatic Pressures. Journal of Materials Science, 22(6): 1934-1940. https://doi.org/10.1007/bf01132919
      Rowe, R. K., Abdelaal, F. B., Zafari, M., et al., 2020. An Approach to High-Density Polyethylene (HDPE) Geomembrane Selection for Challenging Design Requirements. Canadian Geotechnical Journal, 57: 1550-1565. https://doi.org/10.1139/cgj-2019-0572
      Rowe, R. K., Yu, Y., 2019. Magnitude and Significance of Tensile Strains in Geomembrane Landfill Liners. Geotextiles and Geomembranes, 47(3): 439-458. https://doi.org/10.1016/j.geotexmem.2019.01.001
      SL 235-2012, 2012. Specification for Test and Measurement of Geosynthetics. China Water & Power Press, Beijing(in Chinese).
      Stark, T. D., Martin, J. W., Gerbasi, G. T., et al., 2012. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill. Geotechnical and Geoenvironmental Engineering, 138(3): 252-261. https://doi.org/10.1061/(asce)gt.1943-5606.0000581
      Take, W. A., Watson, E., Brachman, R. W. I., et al., 2012. Thermal Expansion and Contraction of Geomembrane Liners Subjected to Solar Exposure and Backfilling. Journal of Geotechnical and Geoenvironmental Engineering, 138(11): 1387-1397. https://doi.org/10.1061/(asce)gt.1943-5606.0000694
      Xiao, Z. Y., Tu, F., 2010. HDPE Geomembrane-Geotextile Interface Shear Properties Determined by Large Size Direct Shear Test. Engineering Mechanics, 27(12): 186-191(in Chinese with English abstract)
      Xu, S. F., Wang, G. C., Wang, Z., 2010. Evaluation of Tensile Forces of Geomembrane Placed on Waste Landfill Slope due to Temperature Variation and Filling Height. Rock and Soil Mechanics, 31(10): 3120-3124 (in Chinese with English abstract)
      包承纲, 2006. 土工合成材料界面特性的研究和试验验证. 岩石力学与工程学报, 25(9): 1735-1744. doi: 10.3321/j.issn:1000-6915.2006.09.002
      冯世进, 高丽亚, 王印, 2008. 垃圾填埋场边坡上土工膜的受力分析. 岩土工程学报, 30(10): 1484-1489. doi: 10.3321/j.issn:1000-4548.2008.10.011
      何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058
      刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. doi: 10.3799/dqkx.2019.270
      钱学德, 施建勇, 刘晓东, 2011. 现代卫生填埋场的设计与施工. 北京: 中国建筑工业出版社.
      SL 235-2012, 2012. 土工合成材料测试规程. 北京: 中国水利水电出版社.
      肖朝昀, 涂帆, 2010. HDPE土工膜与无纺土工布界面剪切性能试验研究. 工程力学, 27(12): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201012031.htm
      许四法, 王国才, 王哲, 2010. 温度和填埋高度引起的垃圾填埋场边坡部土工膜张拉力评价. 岩土力学, 31(10): 3120-3124. doi: 10.3969/j.issn.1000-7598.2010.10.015
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(2)

      Article views (1048) PDF downloads(53) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return