Citation: | Zhang Dong, Zhu Shuangshuang, Zhao Zhiqi, Li Yuhong, Yang Jinmei, Duan Huizhen, Guo Wenjing, Liu Yuntao, 2022. The Water-Sediment Regulation Scheme at Xiaolangdi Reservoir and Its Impact on Sulfur Cycling in the Yellow River Basin. Earth Science, 47(2): 589-606. doi: 10.3799/dqkx.2021.109 |
Balci, N., Shanks, W. C. III, Mayer, B., et al., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite. Geochimica et Cosmochimica Acta, 71(15): 3796-3811. https://doi.org/10.1016/j.gca.2007.04.017
|
Bao, H., Lyons, J. R., Zhou, C, 2008. Triple Oxygen Isotope Evidence for Elevated CO2 Levels after a Neoproterozoic Glaciation. Nature, 453(7194): 504-506. https://doi.org/10.1038/nature06959;> doi: 10.1038/nature06959;>
|
Burke, A., Present, T. M., Paris, G., et al., 2018. Sulfur Isotopes in Rivers: Insights into Global Weathering Budgets, Pyrite Oxidation, and the Modern Sulfur Cycle. Earth and Planetary Science Letters, 496: 168-177. https://doi.org/10.1016/j.epsl.2018.05.022
|
Canfield, D. E., Raiswell, R, 1999. The Evolution of the Sulfur Cycle. American Journal of Science, 299(7): 697-723. https://doi.org/10.2475/ajs.299.7-9.697
|
Chen, J.S., Wang, F.Y., He, D.W., 2006. Geochemistry of Water Quality of the Yellow River Basin. Earth Science Frontiers, 13(1): 58-73(in Chinese with English abstract).
|
Cheng, F., Zhang, H. M., Zhang, G. L., et al., 2019. Distribution and Emission of N2O in the Largest River-Reservoir System along the Yellow River. Science of the Total Environment, 666: 1209-1219. https://doi.org/10.1016/j.scitotenv.2019.02.277
|
Ding, T., Gao, J., Tian, S., et al. 2016. Chemical and Isotopic Characteristics of the Water and Suspended Particulate Materials in the Yangtze River and Their Geological and Environmental Implications. Acta Geologica Sinica, 88(1): 276-360. https://doi.org/10.3969/j.issn.1000-9515.2014.01.023
|
Egbi, C. D., Anornu, G. K., Ganyaglo, S. Y., et al., 2020. Nitrate Contamination of Groundwater in the Lower Volta River Basin of Ghana: Sources and Related Human Health Risks. Ecotoxicology and Environmental Safety, 191: 110227. https://doi.org/10.1016/j.ecoenv.2020.110227
|
Fan, B. L., Zhao, Z. Q., Tao, F. X., et al., 2014. Characteristics of Carbonate, Evaporite and Silicate Weathering in Huanghe River Basin: aComparison among the Upstream, Midstream and Downstream. Journal of Asian Earth Sciences, 96: 17-26. https://doi.org/10.1016/j.jseaes.2014.09.005
|
Fan, B.L., Zhang, D., Tao, Z.H., et al., 2017. Compositions of Hydrogen and Oxygen Isotope Values of Yellow River Water and the Response to Climate Change. China Environmental Science, 37(5): 1906-1914(in Chinese with English abstract).
|
Gao, J.F., Ding, T.P., Tian, S.H., et al., 2011. Silicon Isotope Compositions of Suspended Matter in the Yellow River, China, and Its Significance in Geological Environment. Acta Geologica Sinica, 85(10): 1613-1628(in Chinese with English abstract).
|
He, J.Y., Zhang, D., Zhao, Z.Q., 2017. Spatial and Temporal Variations in Hydrochemical Composition of River Water in Yellow River Basin, China. Chinese Journal of Ecology, 36(5): 1390-1401(in Chinese with English abstract).
|
Hemingway, J. D., Olson, H., Turchyn, A. V., et al., 2020. Triple Oxygen Isotope Insight into Terrestrial Pyrite Oxidation. Proceedings of the National Academy of Sciences of the United States of America, 117(14): 7650-7657. https://doi.org/10.1073/pnas.1917518117
|
Hosono, T., Lorphensriand, O., Onodera, S. I., et al., 2014. Different Isotopic Evolutionary Trends of δ34S and δ18O Compositions of Dissolved Sulfate in an Anaerobic Deltaic Aquifer System. Applied Geochemistry, 46: 30-42. https://doi.org/10.1016/j.apgeochem.2014.04.012
|
Li, G.R., Liu, C.Q., Chen, C., et al., 2009. Sulfur Isotope Composition of River Channel and Reservoir Water in Upper Reaches of Wujiang River in High Flow Season. Resources and Environment in the Yangtze Basin, 18(4): 350-355(in Chinese).
|
Li, S. L., Chetelat, B., Yue, F. J., et al., 2014. Chemical Weathering Processes in the Yalong River Draining the Eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88: 74-84. https://doi.org/10.1016/j.jseaes.2014.03.011
|
Li, X. D., Liu, C. Q., Liu, X. L., et al., 2011a. Identification of Dissolved Sulfate Sources and the Role of Sulfuric Acid in Carbonate Weathering Using Dual-Isotopic Data from the Jialing River, Southwest China. Journal of Asian Earth Sciences, 42(3): 370-380. https://doi.org/10.1016/j.jseaes.2011.06.002
|
Li, X. Q., Zhou, A. G., Gan, Y. Q., et al., 2011b. Controls on the δ34S and δ18O of Dissolved Sulfate in the Quaternary Aquifers of the North China Plain. Journal of Hydrology, 400(3/4): 312-322. https://doi.org/10.1016/j.jhydrol.2011.01.034
|
Li, X.Q., Liu, Y.D., Zhou, A.G., et al., 2014. Sulfur and Oxygen Isotope Compositions of Dissolved Sulfate in the Yangtze River during High Water Period and Its Sulfate Source Tracing. Earth Science, 39(11): 1647-1654, 1692(in Chinese with English abstract).
|
Liu, S. M., Li, L. W., Zhang, G. L., et al., 2012. Impacts of Human Activities on Nutrient Transports in the Huanghe (Yellow River) Estuary. Journal of Hydrology, 430/431: 103-110. https://doi.org/10.1016/j.jhydrol.2012.02.005
|
Liu, S.T., Zhang, D., Li, Y.H., et al., 2020. Water Sources and Factors Controlling Hydro-Chemical Compositions in the Yiluo River Basin. Environmental Science, 41(3): 1184-1196(in Chinese with English abstract).
|
Mayer, B., Shanley, J. B., Bailey, S. W., et al., 2010. Identifying Sources of Stream Water Sulfate after a Summer Drought in the Sleepers River Watershed (Vermont, USA) Using Hydrological, Chemical, and Isotopic Techniques. Applied Geochemistry, 25(5): 747-754. https://doi.org/10.1016/j.apgeochem.2010.02.007
|
Meybeck, M, 2003. Global Occurrence of Major Elements in Rivers. Treatise on Geochemistry, 5(1): 207-223
|
Otero, N., Soler, A., Canals, À, 2008. Controls of δ34S and δ18O in Dissolved Sulphate: Learning from a Detailed Survey in the Llobregat River (Spain). Applied Geochemistry, 23(5): 1166-1185. https://doi.org/10.1016/j.apgeochem.2007.11.009
|
Parnell, A. C., Inger, R., Bearhop, S., et al., 2010. Source Partitioning Using Stable Isotopes: Coping with too much Variation. PLoS One, 5(3): e9672. https://doi.org/10.1371/journal.pone.0009672
|
Qin, Y., Hao, F., Zhang, D., et al., 2020. Accumulation of Organic Carbon in a Large Canyon Reservoir in Karstic Area, Southwest China. Environmental Science and Pollution Research, 27(20): 25163-25172. https://doi.org/10.1007/s11356-020-08724-1
|
Szynkiewicz, A., Borrok, D. M., Skrzypek, G., et al., 2015. Isotopic Studies of the Upper and Middle Rio Grande. Part 1-Importance of Sulfide Weathering in the Riverine Sulfate Budget. Chemical Geology, 411: 323-335. https://doi.org/10.1016/j.chemgeo.2015.05.022
|
Szynkiewicz, A., Modelska, M., Buczyński, S., et al., 2013. The Polar Sulfur Cycle in the Werenskioldbreen, Spitsbergen: Possible Implications for Understanding the Deposition of Sulfate Minerals in the North Polar Region of Mars. Geochimica et Cosmochimica Acta, 106: 326-343. https://doi.org/10.1016/j.gca.2012.12.041
|
Torres, M. A.; ., West, A. J., Li, G, 2014. Sulphide Oxidation and Carbonate Dissolution as a Source of CO2 over Geological Timescales. Nature, 507(7492): 346-349. https://doi.org/10.1038/nature13030
|
Torres, M. A., West, A. J., Clark, K. E., et al., 2016. The Acid and Alkalinity Budgets of Weathering in the Andes-Amazon System: Insights into the Erosional Control of Global Biogeochemical Cycles. Earth and Planetary Science Letters, 450: 381-391. https://doi.org/10.1016/j.epsl.2016.06.012
|
Torres-Martínez, J. A., Mora, A., Knappett, P. S. K., et al., 2020. Tracking Nitrate and Sulfate Sources in Groundwater of an Urbanized Valley Using a Multi-Tracer Approach Combined with a Bayesian Isotope Mixing Model. Water Research, 182: 115962. https://doi.org/10.1016/j.watres.2020.115962
|
Turchyn, A. V., Tipper, E. T., Galy, A., et al., 2013. Isotope Evidence for Secondary Sulfide Precipitation along the Marsyandi River, Nepal, Himalayas. Earth and Planetary Science Letters, 374: 36-46. https://doi.org/10.1016/j.epsl.2013.04.033
|
Tuttle, M. L. W., Breit, G. N., Cozzarelli, I. M, 2009. Processes Affecting δ34S and δ18O Values of Dissolved Sulfate in Alluvium along the Canadian River, Central Oklahoma, USA. Chemical Geology, 265(3/4): 455-467. https://doi.org/10.1016/j.chemgeo.2009.05.009
|
Vilmin, L., Mogollón, J. M., Beusen, A. H. W., et al., 2018. Forms and Subannual Variability of Nitrogen and Phosphorus Loading to Global River Networks over the 20th Century. Global and Planetary Change, 163: 67-85. https://doi.org/10.1016/j.gloplacha.2018.02.007
|
Wei, J., Zhang, B.D., Cai, B., et al., 2019. Practices and Enlightenments of Multi-Reservoir Joint-Dispatching in the Main Stream of the Yellow River in 2018. China Flood & Drought Management, 29(4): 10-14, 35(in Chinese with English abstract).
|
Yu, Y. G., Shi, X. F., Wang, H. J., et al., 2013. Effects of Dams on Water and Sediment Delivery to the Sea by the Huanghe (Yellow River): The Special Role of Water-Sediment Modulation. Anthropocene, 3: 72-82. https://doi.org/10.1016/j.ancene.2014.03.001
|
Zhang, D., Huang, X.Y., Li, C. J, 2013. Sources of Riverine Sulfate in Yellow River and Its Tributaries Determined by Sulfur and Oxygen Isotopes. Advances in Water Science, 24(3): 418-426(in Chinese with English abstract).
|
Zhang, D., Li, X. D., Zhao, Z. Q., et al., 2015. Using Dual Isotopic Data to Track the Sources and Behaviors of Dissolved Sulfate in the Western North China Plain. Applied Geochemistry, 52: 43-56. https://doi.org/10.1016/j.apgeochem.2014.11.011
|
Zhang, D., Li, Y.H., Zhang, H.Y., et al., 2019a. Application of Modified DDARP Method for Purification of Barite in Natural Water Samples. Rock and Mineral Analysis, 38(1): 77-84(in Chinese with English abstract).
|
Zhang, D., Liu, S.T., Zhang, Y.L., et al., 2018. Characteristics of Sulfur and Oxygen Isotopes of Dissolved Sulfate in Response to Water-Sediment Controlling in the Yellow River. Chinese Journal of Ecology, 37(3): 723-733(in Chinese with English abstract).
|
Zhang, D., Qin, Y., Zhao, Z. Q, 2015. Chemical Weathering of Carbonate Rocks by Sulfuric Acid on Small Basin in North China. Acta Scientiae Circumstantiae, 35(11): 3568-3578(in Chinese with English abstract).
|
Zhang, D., Yang, J.M., Huang, X.Y., et al., 2019b. Sources of Dissolved Heavy Metals in River Water of the Yiluo River Basin Based on Sulfur Isotope of Sulfate. China Environmental Science, 39(6): 2549-2559(in Chinese with English abstract).
|
Zhang, D., Zhao, Z. Q., Li, X. D., et al., 2020a. Assessing the Oxidative Weathering of Pyrite and Its Role in Controlling Atmospheric CO2Release in the Eastern Qinghai-Tibet Plateau. Chemical Geology, 543: 119605. https://doi.org/10.1016/j.chemgeo.2020.119605
|
Zhang, D., Zhao, Z. Q., Peng, Y. B., et al., 2020b. Sulfur Cycling in the Yellow River and the Sulfate Flux to the Ocean. Chemical Geology, 534: 119451. https://doi.org/10.1016/j.chemgeo.2019.119451
|
Zhang, L. J., Wang, L., J Cai, W., et al., 2013. Impact of Human Activities on Organic Carbon Transport in the Yellow River. Biogeosciences, 10(4): 2513-2524. https://doi.org/10.5194/bg-10-2513-2013
|
Zhang, Q. Q., Jin, Z. D., Zhang, F., et al., 2015. Seasonal Variation in River Water Chemistry of the Middle Reaches of the Yellow River and Its Controlling Factors. Journal of Geochemical Exploration, 156: 101-113. https://doi.org/10.1016/j.gexplo.2015.05.008
|
Zhang, Q. Q., Wang, H. W., Lu, C, 2020c. Tracing Sulfate Origin and Transformation in an Area with Multiple Sources of Pollution in Northern China by Using Environmental Isotopes and Bayesian Isotope Mixing Model. Environmental Pollution, 265: 115105. https://doi.org/10.1016/j.envpol.2020.115105
|
Zhang, T.T., Yao, P., Wang, J.P., et al., 2015. Effect of Water and Sediment Regulation on the Transport of Particulate Organic Carbon in the Lower Yellow River. Environmental Science, 36(8): 2817-2826(in Chinese with English abstract).
|
Zhang, Y.L., Dong, Y.L., Zhang, D, 2015a. Impacts of the Sanmenxia Reservoir on Organic Carbon Transport Characteristics of the Huanghe River. Scientia Geographica Sinica, 35(7): 912-918(in Chinese with English abstract).
|
Zhang, Y.L., Yang, X.L., Zhang, D, 2015b. Partial Pressure of CO2 and CO2 Degassing Fluxes of Huayuankou and Xiaolangdi Station Affected by Xiaolangdi Reservoir. Environmental Science, 36(1): 40-48(in Chinese with English abstract).
|
陈静生, 王飞越, 何大伟, 2006. 黄河水质地球化学. 地学前缘, 13(1): 58-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200601009.htm
|
范百龄, 张东, 陶正华, 等, 2017. 黄河水氢、氧同位素组成特征及其气候变化响应. 中国环境科学, 37(5): 1906-1914. doi: 10.3969/j.issn.1000-6923.2017.05.038
|
高建飞, 丁悌平, 田世洪, 等, 2011. 黄河水及其悬浮物硅同位素组成的变化特征及其地质环境意义. 地质学报, 85(10): 1613-1628. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110007.htm
|
何姜毅, 张东, 赵志琦, 2017. 黄河流域河水水化学组成的时间和空间变化特征. 生态学杂志, 36(5): 1390-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201705028.htm
|
李干蓉, 刘丛强, 陈椽, 等, 2009. 丰水期乌江上游干流水库-河流体系硫同位素组成. 长江流域资源与环境, 18(4): 350-355. doi: 10.3969/j.issn.1004-8227.2009.04.009
|
李小倩, 刘运德, 周爱国, 等, 2014. 长江干流丰水期河水硫酸盐同位素组成特征及其来源解析. 地球科学, 39(11): 1647-1654, 1692. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201411009.htm
|
刘松韬, 张东, 李玉红, 等, 2020. 伊洛河流域河水来源及水化学组成控制因素. 环境科学, 41(3): 1184-1196. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202003022.htm
|
魏军, 张丙夺, 蔡彬, 等, 2019.2018年黄河干流水库群联合调度实践与启示. 中国防汛抗旱, 29(4): 10-14, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH201904010.htm
|
张东, 黄兴宇, 李成杰, 2013. 硫和氧同位素示踪黄河及支流河水硫酸盐来源. 水科学进展, 24(3): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201303017.htm
|
张东, 李玉红, 张鸿禹, 等, 2019a. 应用改进DDARP方法纯化天然水体样品中硫酸钡固体的效果评价. 岩矿测试, 38(1): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901011.htm
|
张东, 刘松韬, 张永领, 等, 2018. 黄河水沙调控过程中河水溶解性硫酸盐硫和氧同位素组成特征. 生态学杂志, 37(3): 723-733. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201803013.htm
|
张东, 秦勇, 赵志琦, 2015. 我国北方小流域硫酸参与碳酸盐矿物化学风化过程研究. 环境科学学报, 35(11): 3568-3578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201511021.htm
|
张东, 杨锦媚, 黄兴宇, 等, 2019b. 基于硫酸盐硫同位素的伊洛河流域河水溶解性重金属来源. 中国环境科学, 39(6): 2549-2559. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201906042.htm
|
张婷婷, 姚鹏, 王金鹏, 等, 2015. 调水调沙对黄河下游颗粒有机碳输运的影响. 环境科学, 36(8): 2817-2826. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201508016.htm
|
张永领, 董玉龙, 张东, 2015a. 在三门峡水库影响下黄河有机碳的输送特征. 地理科学, 35(7): 912-918. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201507015.htm
|
张永领, 杨小林, 张东, 2015b. 小浪底水库影响下的黄河花园口站和小浪底站pCO2特征及扩散通量. 环境科学, 36(1): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201501006.htm
|