• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 1
    Jan.  2023
    Turn off MathJax
    Article Contents
    Wang Zhao, Lü Xiuxiang, Zhang Leixin, Li Feng, Ouyang Siqi, Wang Rui, 2023. Discovery of 'Quartz Bridge' in Kuqa Foreland Thrust Belt and Its Geological Significance. Earth Science, 48(1): 342-358. doi: 10.3799/dqkx.2021.131
    Citation: Wang Zhao, Lü Xiuxiang, Zhang Leixin, Li Feng, Ouyang Siqi, Wang Rui, 2023. Discovery of "Quartz Bridge" in Kuqa Foreland Thrust Belt and Its Geological Significance. Earth Science, 48(1): 342-358. doi: 10.3799/dqkx.2021.131

    Discovery of "Quartz Bridge" in Kuqa Foreland Thrust Belt and Its Geological Significance

    doi: 10.3799/dqkx.2021.131
    • Received Date: 2021-07-13
      Available Online: 2023-02-01
    • Publish Date: 2023-01-25
    • Based on thin section and core data, quartz bridges in natural fractures of Cretaceous sandstones of the Keshen-Dabei area in the Kuqa foreland thrust belt were discovered by SEM, fluid inclusions and ion microprobe in-situ isotope. Quartz bridge is highly localized overgrowth accumulations that span fracture walls and is scattered on the fracture surface. Fluid inclusion assemblages sub-parallel to the fracture walls were observed in the quartz bridge. Their homogenization temperature range (150-176 ℃) is different from that of the fluid inclusions in quartz grains (90-120 ℃). Besides, the scope of δ18OVSMOWvalues (17‰-21‰) does not overlap with that of quartz grain and quartz secondary enlargement (8‰-17‰). In the Cretaceous sandstone of the Keshen and Dabei area, quartz bridges are widespread in the hinge-parallel fractures. The formation of quartz bridge may be related to the extension during folding in the high-temperature at great depth and the migration of 18O-enriched water of Paleogene evaporates. The research of the quartz bridge is a frontier and practical field, which has great significance for reconstructing fracture opening history and preserving fracture physical properties.

       

    • loading
    • Akse, S. P., Middelburg, J. J., King, H. E., et al., 2020. Rapid Post⁃Mortem Oxygen Isotope Exchange in Biogenic Silica. Geochimica et Cosmochimica Acta, 284: 61-74. https://doi.org/10.1016/j.gca.2020.06.007
      Aplin, A. C., Warren, E. A., 1994. Oxygen Isotopic Indications of the Mechanisms of Silica Transport and Quartz Cementation in Deeply Buried Sandstones. Geology, 22(9): 847-850. https://doi.org/10.1130/0091⁃7613(1994)0220847: oiiotm>2.3.co;2 doi: 10.1130/0091⁃7613(1994)0220847:oiiotm>2.3.co;2
      Becker, S. P., Eichhubl, P., Laubach, S. E., et al., 2010. A 48 M. y. History of Fracture Opening, Temperature, and Fluid Pressure: Cretaceous Travis Peak Formation, East Texas Basin. Geological Society of America Bulletin, 122(7-8): 1081-1093. https://doi.org/10.1130/b30067.
      Bjørlykke, K., 1993. Fluid Flow in Sedimentary Basins. Sedimentary Geology, 86(1-2): 137-158. https://doi.org/10.1016/0037⁃0738(93)90137⁃T
      Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24(9): 1945-1953 (in Chinese with English abstract).
      De Graaf, S., Nooitgedacht, C. W., Le Goff, J., et al., 2019. Fluid⁃Flow Evolution in the Albanide Fold⁃Thrust Belt: Insights from Hydrogen and Oxygen Isotope Ratios of Fluid Inclusions. AAPG Bulletin, 103(10): 2421-2445. https://doi.org/10.1306/02151918034
      Evans, M. A., Bebout, G. E., Brown, C. H., 2012. Changing Fluid Conditions during Folding: An Example from the Central Appalachians. Tectonophysics, 576-577: 99-115. https://doi.org/10.1016/j.tecto.2012.03.002
      Evans, M. A., Fischer, M. P., 2012. On the Distribution of Fluids in Folds: A Review of Controlling Factors and Processes. Journal of Structural Geology, 44: 2-24. https://doi.org/10.1016/j.jsg.2012.08.003
      Guo, X. W., Liu, K. Y., Jia, C. Z., et al., 2016. Hydrocarbon Accumulation Processes in the Dabei Tight⁃Gas Reservoirs, Kuqa Subbasin, Tarim Basin, Northwest China. AAPG Bulletin, 100(10): 1501-1521. https://doi.org/10.1306/04151614016
      Hooker, J. N., Larson, T. E., Eakin, A., et al., 2015. Fracturing and Fluid Flow in a Sub⁃Décollement Sandstone; or, a Leak in the Basement. Journal of the Geological Society, 172(4): 428-442. https://doi.org/10.1144/jgs2014⁃128
      Hou, G. T., Sun, S., Zheng, C. F., et al., 2019. Subsalt Structural Styles of Keshen Section in Kelasu Tectonic Belt. Xinjiang Petroleum Geology, 40(1): 21-26 (in Chinese with English abstract).
      Lander, R. H., Larese, R. E., Bonnell, L. M., 2008. Toward More Accurate Quartz Cement Models: The Importance of Euhedral versus Noneuhedral Growth Rates. AAPG Bulletin, 92(11): 1537-1563. https://doi.org/10.1306/07160808037
      Lander, R. H., Laubach, S. E., 2015. Insights into Rates of Fracture Growth and Sealing from a Model for Quartz Cementation in Fractured Sandstones. Geological Society of America Bulletin, 127(3-4): 516-538. https://doi.org/10.1130/b31092.1
      Laubach, S. E., Fall, A., Copley, L. K., et al., 2016. Fracture Porosity Creation and Persistence in a Basement⁃ Involved Laramide Fold, Upper Cretaceous Frontier Formation, Green River Basin, USA. Geological Magazine, 153(5-6): 887-910. https://doi.org/10.1017/S0016756816000157
      Laubach, S. E., Lander, R. H., Bonnell, L. M., et al., 2004a. Opening Histories of Fractures in Sandstone. Geological Society, London, Special Publications, 231(1): 1-9. https://doi.org/10.1144/gsl.sp.2004.231.01.01
      Laubach, S. E., Reed, R. M., Olson, J. E., et al., 2004b. Coevolution of Crack⁃Seal Texture and Fracture Porosity in Sedimentary Rocks: Cathodoluminescence Observations of Regional Fractures. Journal of Structural Geology, 26(5): 967-982. https://doi.org/10.1016/j.jsg.2003.08.019
      Laubach, S. E., Olson, J. E., Gale, J. F. W., 2004c. Are Open Fractures Necessarily Aligned with Maximum Horizontal Stress? Earth and Planetary Science Letters, 222(1): 191-195. https://doi.org/10.1016/j.epsl.2004.02.019
      Laubach, S. E., Lander, R. H., Criscenti, L. J., et al., 2019. The Role of Chemistry in Fracture Pattern Development and Opportunities to Advance Interpretations of Geological Materials. Reviews of Geophysics, 57(3): 1065-1111. https://doi.org/10.1029/2019RG000671
      Laubach, S. E., Ward, M. E., 2006. Diagenesis in Porosity Evolution of Opening⁃Mode Fractures, Middle Triassic to Lower Jurassic La Boca Formation, NE Mexico. Tectonophysics, 419(1-4): 75-97. https://doi.org/10.1016/j.tecto.2006.03.020
      Li, L., Tang, H. M., Wang, X., et al., 2017. Diagenetic Evolution of Cretaceous Ultra⁃Deep Reservoir in Keshen Belt, Kelasu Thrust Belt, Kuqa Depression. Xinjiang Petroleum Geology, 38(1): 7-14 (in Chinese with English abstract).
      Li, Z., 2016. Research Frontiers of Fluid⁃Rock Interaction and Oil⁃Gas Formation in Deep⁃Buried Basins. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 807-816, 805 (in Chinese with English abstract).
      Li, Z., Luo, W., Zeng, B. Y., et al., 2018. Fluid⁃Rock Interactions and Reservoir Formation Driven by Multiscale Structural Deformation in Basin Evolution. Earth Science, 43(10): 3498-3510 (in Chinese with English abstract).
      Lü, X. X., Jin, Z. J., Zhou, X. Y., et al., 2000. Oil and Gas Accumulation Related to Evaporite Rocks in Kuqa Depression of Tarim Basin. Petroleum Exploration and Development, 27(4): 20-21, 109 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2000.04.004
      Ma, B. B., Cao, Y. C., Eriksson, K. A., et al., 2019. Carbonate Cementation Patterns, Potential Mass Transfer, and Implications for Reservoir Heterogeneity in Eocene Tight⁃Oil Sandstones, Dongying Depression, Bohai Bay Basin, China: Evidence from Petrology, Geochemistry, and Numerical Modeling. AAPG Bulletin, 103(12): 3035-3067. https://doi.org/10.1306/04101917330
      McBride, E. F., 1989. Quartz Cement in Sandstones: A Review. Earth⁃Science Reviews, 26(1-3): 69-112. https://doi.org/10.1016/0012⁃8252(89)90019⁃6
      Olson, J. E., Laubach, S. E., Lander, R. H., 2009. Natural Fracture Characterization in Tight Gas Sandstones: Integrating Mechanics and Diagenesis. AAPG Bulletin, 93(11): 1535-1549. https://doi.org/10.1306/08110909100
      Qi, J. F., Lei, G. L., Li, M. G., et al., 2009. Analysis of Structure Model and Formation Mechanism of Kelasu Structure Zone, Kuqa Depression. Geotectonica et Metallogenia, 33(1): 49-56 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.007
      Shi, W. Z., Chen, H. H., He, S., 2007. Quantitative Evaluation on Contribution of Structural Compression to Overpressure and Analysis on Origin of Overpressure in Kuqa Depression. Acta Petrolei Sinica, 28(6): 59-65 (in Chinese with English abstract).
      Tan, H. B., 2005. Geochemical Research on Ancient Salt Rock and Prospect of Sylvite Deposit Formation in Western Tarim Basin (Dissertation). Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining (in Chinese with English abstract).
      Tang, L. J., Jia, C. Z., Jin, Z. J., et al., 2003. Salt⁃Related Structural Characteristics and Hydrocarbon Accumulation in the Middle Segment of the Kuqa Foreland Fold Belt in the Northern Tarim Basin, NW China. Geological Review, 49(5): 501-506 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2003.05.007
      Vandeginste, V., Swennen, R., Allaeys, M., et al., 2012. Challenges of Structural Diagenesis in Foreland Fold⁃and⁃Thrust Belts: A Case Study on Paleofluid Flow in the Canadian Rocky Mountains West of Calgary. Marine and Petroleum Geology, 35(1): 235-251. https://doi.org/10.1016/j.marpetgeo.2012.02.014
      Wang, X., Jia, C. Z., Yang, S. F., et al., 2002. The Time of Deformation on the Kuqa Fold⁃and⁃Thrust Belt in the Southern Tianshan-Based on the Kuqa River Area. Acta Geologica Sinica, 76(1): 55-63 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2002.01.008
      Wang, Z. M., Xie, H. W., Li, Y., et al., 2013. Exploration and Discovery of Large and Deep Subsalt Gas Fields in Kuqa Foreland Thrust Belt. China Petroleum Exploration, 18(3): 1-11 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2013.03.001
      Wu, S. J., Fan, C. W., Zhao, Z. J., et al., 2019. Origin of Carbonate Cement in Reservoirs of Ledong Area, Yinggehai Basin and Its Geological Significance. Earth Science, 44(8): 2686-2694 (in Chinese with English abstract).
      Yu, Y. X., Tang, L. J., Yang, W. J., et al., 2014. Salt Structures and Hydrocarbon Accumulations in the Tarim Basin, Northwest China. AAPG Bulletin, 98(1): 135-159. https://doi.org/10.1306/05301311156
      Yuan, T., Yi, H. S., Lan, Y. F., et al., 2017. A Review of Research on the Source of Quartz Cements in Sandstone Reservoirs. Acta Mineralogica Sinica, 37(S1): 168-176 (in Chinese with English abstract).
      Zeng, L. B., Zhu, R. K., Gao, Z. Y., et al., 2016. Structural Diagenesis and Its Petroleum Geological Significance. Petroleum Science Bulletin, 1(2): 191-197 (in Chinese with English abstract).
      Zhang, R. H., Zhang, H. L., Shou, J. F., et al., 2008. Geological Analysis on Reservoir Mechanism of the Lower Cretaceous Bashijiqike Formation in Dabei Area of the Kuqa Depression. Chinese Journal of Geology (Scientia Geologica Sinica), 43(3): 507-517 (in Chinese with English abstract).
      Zheng, M., Li, J. Z., Wu, X. Z., et al., 2019. Potential of Oil and Natural Gas Resources of Main Hydrocarbon⁃Bearing Basins and Key Exploration Fields in China. Earth Science, 44(3): 833-847 (in Chinese with English abstract).
      池国祥, 卢焕章, 2008. 流体包裹体组合对测温数据有效性的制约及数据表达方法. 岩石学报, 24(9): 1945-1953. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200809001.htm
      侯贵廷, 孙帅, 郑淳方, 等, 2019. 克拉苏构造带克深区段盐下构造样式. 新疆石油地质, 40(1): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901004.htm
      李玲, 唐洪明, 王茜, 等, 2017. 克拉苏冲断带克深区带白垩系超深储集层成岩演化. 新疆石油地质, 38(1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201701003.htm
      李忠, 2016. 盆地深层流体‒岩石作用与油气形成研究前沿. 矿物岩石地球化学通报, 35(5): 807-816, 805. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201605003.htm
      李忠, 罗威, 曾冰艳, 等, 2018. 盆地多尺度构造驱动的流体‒岩石作用及成储效应. 地球科学, 43(10): 3498-3510. doi: 10.3799/dqkx.2018.323
      吕修祥, 金之钧, 周新源, 等, 2000. 塔里木盆地库车坳陷与膏盐岩相关的油气聚集. 石油勘探与开发, 27(4): 20-21, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200004005.htm
      漆家福, 雷刚林, 李明刚, 等, 2009. 库车坳陷克拉苏构造带的结构模型及其形成机制. 大地构造与成矿学, 33(1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901008.htm
      石万忠, 陈红汉, 何生, 2007. 库车坳陷构造挤压增压的定量评价及超压成因分析. 石油学报, 28(6): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200706011.htm
      谭红兵, 2005. 塔里木盆地西部古盐岩地球化学与成钾预测研究(博士学位论文). 西宁: 中国科学院盐湖研究所.
      汤良杰, 贾承造, 金之钧, 等, 2003. 塔里木盆地库车前陆褶皱带中段盐相关构造特征与油气聚集. 地质论评, 49(5): 501-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200305007.htm
      汪新, 贾承造, 杨树锋, 等, 2002. 南天山库车冲断褶皱带构造变形时间: 以库车河地区为例. 地质学报, 76(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200201010.htm
      王招明, 谢会文, 李勇, 等, 2013. 库车前陆冲断带深层盐下大气田的勘探和发现. 中国石油勘探, 18(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201303002.htm
      吴仕玖, 范彩伟, 招湛杰, 等, 2019. 莺歌海盆地乐东区碳酸盐胶结物成因及地质意义. 地球科学, 44(8): 2686-2694. doi: 10.3799/dqkx.2019.154
      袁桃, 伊海生, 兰叶芳, 等, 2017. 砂岩储层石英胶结物的SiO2来源研究综述. 矿物学报, 37(S1): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2017Z1021.htm
      曾联波, 朱如凯, 高志勇, 等, 2016. 构造成岩作用及其油气地质意义. 石油科学通报, 1(2): 191-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201602002.htm
      张荣虎, 张惠良, 寿建峰, 等, 2008. 库车坳陷大北地区下白垩统巴什基奇克组储层成因地质分析. 地质科学, 43(3): 507-517. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200803007.htm
      郑民, 李建忠, 吴晓智, 等, 2019. 我国主要含油气盆地油气资源潜力及未来重点勘探领域. 地球科学, 44(3): 833-847. doi: 10.3799/dqkx.2019.957
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(1)

      Article views (904) PDF downloads(86) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return