• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 1
    Jan.  2022
    Turn off MathJax
    Article Contents
    Zhang Yiyang, Zhong Fujun, Pan Jiayong, Xia Fei, Qi Jiaming, Li Haidong, Liu Wenquan, 2022. Petrogenesis and Its Relationship with Uranium Mineralization of Diabase in Huangsha Uranium Ore-Field, South Jiangxi Province. Earth Science, 47(1): 206-223. doi: 10.3799/dqkx.2021.132
    Citation: Zhang Yiyang, Zhong Fujun, Pan Jiayong, Xia Fei, Qi Jiaming, Li Haidong, Liu Wenquan, 2022. Petrogenesis and Its Relationship with Uranium Mineralization of Diabase in Huangsha Uranium Ore-Field, South Jiangxi Province. Earth Science, 47(1): 206-223. doi: 10.3799/dqkx.2021.132

    Petrogenesis and Its Relationship with Uranium Mineralization of Diabase in Huangsha Uranium Ore-Field, South Jiangxi Province

    doi: 10.3799/dqkx.2021.132
    • Received Date: 2021-05-25
      Available Online: 2022-02-11
    • Publish Date: 2022-01-20
    • The diabase dikes in the Huangsha U ore-field of South Jiangxi Province have close spatial relationship with U mineralization. The petrography, major element, trace element and Sr-Nd-Pb isotope analysis of diabase were carried out. The diabase is geochemically characterized by low SiO2, MgO and alkaline, Na2O > K2O, enrichment of large ion lithophile elements (Sr, K, Rb, Ba), no fractionation in LREE and HREE (LREE/HREE=2.81-2.97), weak Eu negative anomaly(δEu=0.95-0.98), typical Dupal anomaly Pb isotopic, high (87Sr/86Sr)i(0.704 93-0.706 58) and low εNd(t) (3.98-4.84), suggesting that the diabase belongs to continental tholeiite series, the magmatic source was the relatively enriched mantle changed by the metasomatism fluid originated from the subduction zone of Pacific Ocean Plate, formed under the large scale lithosphere thining tectonic background. The gaps between diagenetic ages of diabase (140 Ma) and uranium mineralization ages (100 Ma, 63-76 Ma) are significantly large. It is considered that diabase provides a favorable reductive agent for pitchblende precipitation. Comparing the diabase in the Zhuguang-Xiazhuang ore-field, there are many similarities in origin and ore-controlling rules. In Huangsha U ore-field, there are favorable geological conditions for U mineralizaiton and great metallogenetic potentiality. The exploration for U deposit in the future should focus on the intersection type U mineralization and the intersection of NWW-trending basic dikes and NE-trending fracture zone.

       

    • loading
    • Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588-612. https://doi.org/10.1016/j.oregeorev.2017.12.010
      Cao, H.J., Huang, G.L., Xu, L.L., et al., 2013. The Ar-Ar Age and Geochemical Characteristics of Diabase Dykes of the Youdong Fault Zone in South of Zhuguang Granite Pluton. Acta Geologica Sinica, 87(7): 957-966 (in Chinese with English abstract).
      Chen, Y.C., Wang, D.H., Xu, Z.G., et al., 2014. Outline of Regional Metallogeny of Ore Deposits Associated with the Mesozoic Magmatism in South China. Geotectonica et Metallogenia, 38(2): 219-229 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DGYK201402002.htm
      Chen, Y. W., Bi, X. W., Hu, R. Z., et al., 2012. Element Geochemistry, Mineralogy, Geochronology and Zircon Hf Isotope of the Luxi and Xiazhuang Granites in Guangdong Province, China: Implications for U Mineralization. Lithos, 150: 119-134. https://doi.org/10.1016/j.lithos.2012.06.025
      Cheng, H.H., Du, L.T., 1998. Study on Heavy Minerals of Some Uranium Deposits. Uranium Geology, 14(1): 26-31 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YKDZ199801006&dbcode=CJFD&year=1998&dflag=pdfdown
      Chow, T. J., Patterson, C. C., 1962. The Occurrence and Significance of Lead Isotopes in Pelagic Sediments. Geochimica et Cosmochimica Acta, 26(2): 263-308. https://doi.org/10.1016/0016-7037(62)90016-9
      Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary: Identification and Significance. Lithos, 23(1-2): 1-18. https://doi.org/10.1016/0024-4937(89)90020-0
      Cuney, M., 1978. Geologic Environment, Mineralogy, and Fluid Inclusions of the Bois Noirs-Limouzat Uranium Vein, Forez, France. Economic Geology, 73(8): 1567-1610. https://doi.org/10.2113/gsecongeo.73.8.1567
      Cuney, M., 2009. The Extreme Diversity of Uranium Deposits. Mineralium Deposita, 44(1): 3-9. https://doi.org/10.1007/s00126-008-0223-1
      Currie, K. L., Williams, P. R., 1993. An Archean Calc- Alkaline Lamprophyre Suite, Northeastern Yilgarn Block, Western Australia. Lithos, 31(1-2): 33-50. https://doi.org/10.1016/0024-4937(93)90031-7
      Deng, J.F., Feng, Y.F., Di, Y.J., et al., 2015. Magmatic Arc and Ocean-Continent Transition: Discussion. Geological Review, 61(3): 473-484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201503001.htm
      Deng, P., Ling, H.F., Shen, W.Z., et al., 2005. A Discussion on Alkali Metasomatism in Shituling Uranium Deposit, Northern Guangdong Province. Geological Review, 51(5): 79-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200505011.htm
      Deng, P., Shen, W.Z., Ling, H.F., et al., 2003. Uranium Mineralization Related to Mantle Fluid: A Case Study of the Xianshi Deposit in the Xiazhuang Uranium Orefield. Geochimica, 32(6): 520-528 (in Chinese with English abstract). http://www.researchgate.net/publication/313002281_Uranium_mineralization_related_to_mantle_fluid_A_case_study_of_the_Xianshi_deposit_in_the_Xiazhuang_uranium_orefield
      Du, L.T., 1982. On the Granite-Type Uranium Deposits. Atomic Energy Press, Beijing (in Chinese).
      Feng, Z.J., Lai, Z.X., Mo, J.H., et al., 2016. A Study of Metallogenic Mechanism of "Intersection" Type Uranium Deposit and Exploration Thinking of Xiazhuang Orefield. Mineral Deposits, 35(5): 1047-1061 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201605012.htm
      Fitton, J. G., James, D., Leeman, W. P., 1991. Basic Magmatism Associated with Late Cenozoic Extension in the Western United States: Compositional Variations in Space and Time. Journal of Geophysical Research: Solid Earth, 96(B8): 13693-13711. https://doi.org/10.1029/91jb00372
      Floyd, P. A., Winchester, J. A., 1975. Magma Type and Tectonic Setting Discrimination Using Immobile Elements. Earth and Planetary Science Letters, 27(2): 211-218. https://doi.org/10.1016/0012-821x(75)90031-x
      Gan, C. S., Wang, Y. J., Zhang, Y. Z., et al., 2017. The Earliest Jurassic A-Type Granite in the Nanling Range of Southeastern South China: Petrogenesis and Geological Implications. International Geology Review, 59(3): 274-292. https://doi.org/10.1080/00206814.2016.1254574
      Gao, P., Zhao, Z. F., Zheng, Y. F., 2016. Magma Mixing in Granite Petrogenesis: Insights from Biotite Inclusions in Quartz and Feldspar of Mesozoic Granites from South China. Journal of Asian Earth Sciences, 123: 142-161. https://doi.org/10.1016/j.jseaes.2016.04.003
      Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341-2357. https://doi.org/10.1093/petrology/egm062
      He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. https://doi.org/10.1016/j.lithos.2010.08.016
      Hemming, S. R., McLennan, S. M., 2001. Pb Isotope Compositions of Modern Deep Sea Turbidites. Earth and Planetary Science Letters, 184(2): 489-503. https://doi.org/10.1016/s0012-821x(00)00340-x
      Hofmann, A.W., 1986. Siderophile Element in Ozeanischen Basalten, Ihre V erarmung Imprimitiven Mutel und Ihre Bedeutung Bei der Entwicklung. Fortschritte der Mineralogie (Beiheft), 64(1): 79.
      Hu, R.Z., 1990. A Possible Mineralization Model of Granite-Type Uranium Deposit. Chinese Science Bulletin, 35(7): 526-528 (in Chinese). doi: 10.1360/csb1990-35-7-526
      Hu, R. Z., Bi, X. W., Zhou, M. F., et al., 2008. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598. https://doi.org/10.2113/gsecongeo.103.3.583
      Hu, R. Z., Burnard, P. G., Bi, X. W., et al., 2009. Mantle-Derived Gaseous Components in Ore-Forming Fluids of the Xiangshan Uranium Deposit, Jiangxi Province, China: Evidence from He, Ar and C Isotopes. Chemical Geology, 266(1-2): 86-95. https://doi.org/10.1016/j.chemgeo.2008.07.017
      Hu, R.Z., Li, C.Y., Ni, S.J., et al., 1993. Research on ΣCO2 Source in Ore-Forming Hydrothermal Solution of Granite-Type Uranium Deposit, South China. Science in China (Series B), 23(2): 189-196 (in Chinese).
      Ibrahim, M. E., El-Tokhi, M. M., Saleh, G. M., et al., 2007. Geochemistry of Lamprophyres Associated with Uranium Mineralization, Southeastern Desert, Egypt. Chinese Journal of Geochemistry, 26(4): 356-365. https://doi.org/10.1007/s11631-007-0356-4
      Jiang, Y.H., Jiang, S.Y., Ling, H.F., 2004. Mantle-Derived Fluids and Uranium Mineralization. Earth Science Frontiers, 11(2): 491-499 (in Chinese with English abstract).
      Lai, Z.X., 2015. The Geochemical Character of Intermediate-Basic Dikes and Its Control on Uranium Deposits in Xiazhuang Ore Field. Uranium Geology, 31(3): 370-376 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YKDZ201503003&dbcode=CJFD&year=2015&dflag=pdfdown
      Leroy, J., 1978. The Margnac and Fanay Uranium Deposits of the La Crouzille District (Western Massif Central, France): Geologic and Fluid Inclusion Studies. Economic Geology, 73(8): 1611-1634. https://doi.org/10.2113/gsecongeo.73.8.1611
      Li, C. L., Wang, Z. X., Lü, Q.T., et al., 2021. Mesozoic Tectonic Evolution of the Eastern South China Block: A Review on the Synthesis of the Regional Deformation and Magmatism. Ore Geology Reviews, 131: 104028. https://doi.org/10.1016/j.oregeorev.2021.104028
      Li, J., Huang, H.Y., Liu, Z.J., et al., 2021. 40Ar-39Ar Geochronological Characteristics of Diabase in Lujing Area of Middle Zhuguangshan. Journal of Jilin University (Earth Science Edition), 51(2): 442-454 (in Chinese with English abstract).
      Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 19-21, 25-36 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx702.003.htm
      Li, X. H., McCulloch, M. T., 1998. Geochemical Characteristics of Cretaceous Mafic Dikes from Northern Guangdong, SE China: Age, Origin and Tectonic Significance. In: Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington, D. C. . https://doi.org/10.1029/gd027p0405
      Li, Z.Y., Li, X.Z., Lin, J.R., 1999. On the Meso-Cenozoic Mantle Plume Tectonics, Its Relationship to Uranium Metallogenesis and Prospecting Directions in South China. Uranium Geology, 15(1): 10-18, 35 (in Chinese with English abstract).
      Ling, H.F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193-206 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201102005.htm
      Ling, H. F., Burton, K. W., O'Nions, R. K., et al., 1997. Evolution of Nd and Pb Isotopes in Central Pacific Seawater from Ferromanganese Crusts. Earth and Planetary Science Letters, 146(1-2): 1-12. https://doi.org/10.1016/s0012-821x(96)00224-5
      Lu, J.J., Wu, L.Q., Ling, H.F., et al., 2006. The Origin of the Huangpi-Zhangguangying Diabase-Dykes in the Xiazhuang Uranium Ore District of Northern Guangdong Province: Evidence from Trace Elements and Nd-Sr-Pb-O Isotopes. Acta Petrologica Sinica, 22(2): 397-406 (in Chinese with English abstract).
      Luo, J. C., Hu, R. Z., Fayek, M., et al., 2015. In-Situ SIMS Uraninite U-Pb Dating and Genesis of the Xianshi Granite-Hosted Uranium Deposit, South China. Ore Geology Reviews, 65: 968-978. https://doi.org/10.1016/j.oregeorev.2014.06.016
      Luo, J.C., Qi, Y.Q., Wang, L.X., et al., 2019. Ar-Ar Dating of Mafic Dykes from the Xiazhuang Uranium Ore Field in Northern Guangdong, South China: A Reevaluation of the Role of Mafic Dyke in Uranium Mineralization. Acta Petrologica Sinica, 35(9): 2660-2678 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.03
      Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. https://doi.org/10.1007/s00126-012-0446-z
      Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      Min, M. Z., Luo, X. Z., Du, G. S., et al., 1999. Mineralogical and Geochemical Constraints on the Genesis of the Granite-Hosted Huangao Uranium Deposit, SE China. Ore Geology Reviews, 14(2): 105-127. https://doi.org/10.1016/s0169-1368(98)00020-1
      Neal, C. R., Mahoney, J. J., Chazey, W. J., 2002. Mantle Sources and the Highly Variable Role of Continental Lithosphere in Basalt Petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. Journal of Petrology, 43(7): 1177-1205. https://doi.org/10.1093/petrology/43.7.1177
      Nie, B., Zhang, W.L., 2018. Ar-Ar Age of the Diabase and Its Relationship with Uranium Mineralization in Huangsha Mining District, Southern Jiangxi Province. Mineral Resources and Geology, 32(3): 390-396 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCYD201803002.htm
      Pang, Y.Q., Fan, H.H., Gao, F., et al., 2019. Helium and Argon Isotopic Compositions of Fluid Inclusions and Tracing to the Source of Ore-Forming Fluids for the Southern Zhuguang Uranium Ore Field in Northern Guangdong Province. Acta Petrologica Sinica, 35(9): 2765-2773 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.09
      Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, Chichester.
      Pearce, J.A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. Continental Basalts and Mantle Xenoliths, 147(6): 2162-2173. https://doi.org/10.1149/1.1393502
      Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. https://doi.org/10.1016/0012-821x(73)90129-5
      Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192
      Ruzicka, V., 1993. Vein Uranium Deposits. Ore Geology Reviews, 8(3-4): 247-276. https://doi.org/10.1016/0169-1368(93)90019-u
      Shang, P.Q., Hu, R.Z., Bi, X.W., et al., 2007. Discussion of Some Problems on the Hydrothermal Uranium Mineralization in South China. Bulletin of Mineralogy, Petrology and Geochemistry, 26(3): 290-294 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200703017.htm
      Shao, F., Xu, J.J., Mao, Y.F., et al., 2013. Study on Mineral Discharge Mechanism of Granite Type Uranium Deposits in South China Uranium Metallogenic Province. Uranium Geology, 29(3): 146-151, 171 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ201303006.htm
      Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201207004.htm
      Shu, L. S., Wang, Y., Sha, J. G., et al., 2009. Jurassic Sedimentary Features and Tectonic Settings of Southeastern China. Science China Earth Sciences, 52(12): 1969-1978. https://doi.org/10.1007/s11430-009-0159-z
      Shu, T.T., Zhong, F.J., Qi, J.M., et al., 2017. Geological Characteristics of Mineralization of Huangsha Uranium Deposit of "Intersection" Type in Qingzhangshan Pluton. Mineral Resources and Geology, 31(2): 306-311 (in Chinese with English abstract).
      Song, H., Xu, Z.Q., Song, S.W., et al., 2019. Geochemistry and LA-ICP-MS Zircon U-Pb Geochronological Dating of Diabase Dykes and Their Relationship with Mineralization of the Carbonate-Siliceous-Pelitic Rock Type Uranium Deposits in Daxin-Qinjia, Western Guangxi. Acta Petrologica Sinica, 35(9): 2845-2863 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.15
      Tao, J.H., Li, W.X., Li, X.H., et al., 2013. Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry. Scientia Sinica Terrae, 43(5): 770-788 (in Chinese).
      Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London.
      Tian, X.L., 2016. Geochemistry Characteristics and Relationship with Uranium Deposite of Zhuguang Mountain and Guidong Region (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wang, L. X., Ma, C. Q., Lai, Z. X., et al., 2015. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China): Implications for Tectonic Evolution and Uranium Metallogenesis. Lithos, 239: 71-85. https://doi.org/10.1016/j.lithos.2015.10.008
      Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3): 263-286. https://doi.org/10.2747/0020-6814.45.3.263
      Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      Wang, Y.L., Zhang, C.J., Xiu, S.Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).
      Wang, Z.Q., Li, Z.Y., Wu, L.Q., et al., 2010. Geochemical Evidences for Mantle-Derived Uranium Metallogenesis: A Case Study of Xiaoshui Intersection-Type Uranium Deposit in Xiazhuang Area. Uranium Geology, 26(1): 24-34 (in Chinese with English abstract).
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Xu, X.B., Liang, C.H., Chen, J.J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150 (in Chinese with English abstract).
      Xu, Z.J., Cheng, R.H., He, Y.Y., et al., 2019. Zircon U-Pb Ages, Sr-Nd Isotopes and Geological Significance of Early Jurassic Volcanic Rocks from Southwest Fujian. Earth Science, 44(4): 1371-1388 (in Chinese with English abstract).
      Xu, Z. Q., Song, H., Li, P., et al., 2014. Diabase Dykes in Sanqisan Uranium Deposit and Its Relation with Uranium Mineralization, Guangxi. Acta Geologica Sinica (English Edition), 88(S2): 1414-1415. https://doi.org/10.1111/1755-6724.12381_36
      Yan, Q. H., Wang, H., Wu, Y. M., et al., 2021. Simultaneous Development of Arc-Like and OIB-Like Mafic Dikes in Eastern Guangdong, SE China: Implications for Late Jurassic-Early Cretaceous Tectonic Setting and Deep Geodynamic Processes of South China. Lithos, 388-389: 106021. https://doi.org/10.1016/j.lithos.2021.106021
      Yu, X. Q., Chen, Z. W., Hu, J., et al., 2021. Early Cretaceous Extension in South China: Constraints from East-West-Trending A-Type Granite Belts and Growth Strata in Terrigenous Basins. International Geology Review, 1-21. https://doi.org/10.1080/00206814.2021.1881920
      Zhang, B., Guo, F., Zhang, X. B., et al., 2019a. Early Cretaceous Subduction of Paleo-Pacific Ocean in the Coastal Region of SE China: Petrological and Geochemical Constraints from the Mafic Intrusions. Lithos, 334-335: 8-24. https://doi.org/10.1016/j.lithos.2019.03.010
      Zhang, C., Cai, Y. Q., Dong, Q., et al., 2019b. Genesis of the South Zhuguang Uranium Ore Field, South China: Fluid Inclusion and H-C-O-S-Sr Isotopic Constraints. Applied Geochemistry, 100: 104-120. https://doi.org/10.1016/j.apgeochem.2018.11.008
      Zhang, D., Zhao, K. D., Chen, W., et al., 2018. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China: Geochronology, Petrogenesis and Relationship with Uranium Mineralization. Lithos, 308-309: 118-133. https://doi.org/10.1016/j.lithos.2018.02.028
      Zhang, G.Q., Hu, R.Z., Shang, P.Q., et al., 2007. An Overview on the Ore-Forming Mechanism of the Granite-Type Uranium Deposit in South China. Bulletin of Mineralogy, Petrology and Geochemistry, 26(4): 399-404 (in Chinese with English abstract).
      Zhang, M., Chen, P.R., Huang, G.L., et al., 2006a. The Research on the Geochemical Characteristics of Longyuanba Composite Pluton in Nanling Region. Uranium Geology, 22(6): 336-344 (in Chinese with English abstract).
      Zhang, M., Chen, P.R., Huang, G.L., et al., 2006b. Single-Zircon LA-ICP-MS Ages of the Longyuanba Pluton in the Eastern Nanling Region and Geological Implication. Acta Geologica Sinica, 80(7): 984-994 (in Chinese with English abstract).
      Zhang, Y.Q., Dong, S.W., 2019. East Asia Multi-Plate Convergence in Late Mesozoic and the Development of Continental Tectonic Systems. Journal of Geomechanics, 25(5): 613-641 (in Chinese with English abstract).
      Zhong, F.J., Pan, J.Y., Liu, G.Q., et al., 2014. Geological Characteristics of Mineralization of Xiazhuang "Intersection" Type Uranium Deposit and Its Significance for Prospecting. Mineral Resources and Geology, 28(5): 590-595 (in Chinese with English abstract).
      Zhong, F.J., Pan, J.Y., Wu, J.H., et al., 2019. Petrogenesis and Its Relationship with Uranium Mineralization of Gabbro-Diorite in Changjiang Uranium Ore-Field, Northern Guangdong Province, China. Earth Science, 44(9): 3042-3059 (in Chinese with English abstract).
      Zhong, F.J., Pan, J.Y., Xu, Y., et al., 2017. Mineral Chemistry of Biotites and Chlorites from Huangsha Uranium Mining Area in the Middle Nangling Range: Constraints on Petrogenesis and Uranium Mineralization. Geological Journal of China Universities, 23(4): 575-590 (in Chinese with English abstract).
      Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated Ⅰ-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444-460. https://doi.org/10.1007/s12583-016-0677-3
      Zhu, B., 2010. The Study of Mantle Liquid and Uranium Metallogenesis: Take Uranium Ore Field of South Zhuguang Mountain as an Example (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Zhu, Q.B., Jin, G.D., Zhao, X.L., et al., 2020. Petrogenesis of the Late Mesozoic Lingshang Ultramafic Intrusion in Northern Jiangxi Province: Chronologic and Geochemical Constraints. Geology in China, 47(4): 1092-1108 (in Chinese with English abstract).
      Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
      曹豪杰, 黄国龙, 许丽丽, 等, 2013. 诸广花岗岩体南部油洞断裂带辉绿岩脉的Ar-Ar年龄及其地球化学特征. 地质学报, 87(7): 957-966. doi: 10.3969/j.issn.0001-5717.2013.07.005
      陈毓川, 王登红, 徐志刚, 等, 2014. 华南区域成矿和中生代岩浆成矿规律概要. 大地构造与成矿学, 38(2): 219-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402002.htm
      程华汉, 杜乐天, 1998. 几个铀矿床碱交代作用中重砂矿物变化的研究. 铀矿地质, 14(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199801006.htm
      邓晋福, 冯艳芳, 狄永军, 等, 2015. 岩浆弧火成岩构造组合与洋陆转换. 地质论评, 61(3): 473-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201503001.htm
      邓平, 凌洪飞, 沈渭洲, 等, 2005. 粤北石土岭铀矿床碱交代作用成因探讨. 地质论评, 51(5): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200505011.htm
      邓平, 沈渭洲, 凌洪飞, 等, 2003. 地幔流体与铀成矿作用: 以下庄矿田仙石铀矿床为例. 地球化学, 32(6): 520-528. doi: 10.3321/j.issn:0379-1726.2003.06.002
      杜乐天, 1982. 花岗岩型铀矿文集. 北京: 原子能出版社.
      冯志军, 赖中信, 莫济海, 等, 2016. 下庄矿田"交点"型铀矿床成矿机理研究及勘查思路探讨. 矿床地质, 35(5): 1047-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201605012.htm
      胡瑞忠, 1990. 花岗岩型铀矿床一种可能的成矿模式. 科学通报, 35(7): 526-528. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199007014.htm
      胡瑞忠, 李朝阳, 倪师军, 等, 1993. 华南花岗岩型铀矿床成矿热液中∑CO2来源研究. 中国科学(B辑), 23(2): 189-196. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199302011.htm
      姜耀辉, 蒋少涌, 凌洪飞, 2004. 地幔流体与铀成矿作用. 地学前缘, 11(2): 491-499. doi: 10.3321/j.issn:1005-2321.2004.02.019
      赖中信, 2015. 下庄铀矿田中基性脉岩地球化学特征及其控矿作用. 铀矿地质, 31(3): 370-376. doi: 10.3969/j.issn.1000-0658.2015.03.003
      李杰, 黄宏业, 刘子杰, 等, 2021. 诸广中段鹿井地区辉绿岩40Ar-39Ar年代学特征. 吉林大学学报(地球科学版), 51(2): 442-454. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202102011.htm
      李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 19-21, 25-36 https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX702.003.htm
      李子颖, 李秀珍, 林锦荣, 1999. 试论华南中新生代地幔柱构造、铀成矿作用及其找矿方向. 铀矿地质, 15(1): 10-18, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ901.001.htm
      凌洪飞, 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57(2): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201102005.htm
      陆建军, 吴烈勤, 凌洪飞, 等, 2006. 粤北下庄铀矿田黄陂‒张光营辉绿岩脉的成因: 元素地球化学和Nd-Sr-Pb-O同位素证据. 岩石学报, 22(2): 397-406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602012.htm
      骆金诚, 齐有强, 王连训, 等, 2019. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识. 岩石学报, 35(9): 2660-2678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909003.htm
      聂斌, 张万良, 2018. 赣南黄沙矿区辉绿岩Ar-Ar年龄及其与铀成矿关系. 矿产与地质, 32(3): 390-396. doi: 10.3969/j.issn.1001-5663.2018.03.002
      庞雅庆, 范洪海, 高飞, 等, 2019. 粤北诸广南部铀矿田流体包裹体的氦氩同位素组成及成矿流体来源示踪. 岩石学报, 35(9): 2765-2773. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909009.htm
      商朋强, 胡瑞忠, 毕献武, 等, 2007. 华南热液铀矿成矿作用若干问题探讨. 矿物岩石地球化学通报, 26(3): 290-294. doi: 10.3969/j.issn.1007-2802.2007.03.017
      邵飞, 许健俊, 毛玉峰, 等, 2013. 华南铀成矿省花岗岩型铀矿矿质卸载机制研究. 铀矿地质, 29(3): 146-151, 171. doi: 10.3969/j.issn.1000-0658.2013.03.004
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
      舒田田, 钟福军, 祁家明, 等, 2017. 青嶂山岩体黄沙铀矿区"交点"型铀矿成矿地质特征. 矿产与地质, 31(2): 306-311. doi: 10.3969/j.issn.1001-5663.2017.02.015
      宋昊, 徐争启, 宋世伟, 等, 2019. 桂西大新‒钦甲地区辉绿岩脉地球化学与锆石U-Pb同位素年代学及对碳硅泥岩型铀矿床成因的启示. 岩石学报, 35(9): 2845-2863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909015.htm
      陶继华, 李武显, 李献华, 等, 2013. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究. 中国科学: 地球科学, 43(5): 770-788. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201305008.htm
      田晓龙, 2016. 诸广山‒贵东地区基性岩脉的地球化学特征及其与铀矿的关系(硕士学位论文). 北京: 中国地质大学.
      汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm
      王正其, 李子颖, 吴烈勤, 等, 2010. 幔源铀成矿作用的地球化学证据: 以下庄小水"交点型"铀矿床为例. 铀矿地质, 26(1): 24-34. doi: 10.3969/j.issn.1000-0658.2010.01.004
      徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
      许中杰, 程日辉, 何奕言, 等, 2019. 闽西南早侏罗世火山岩的锆石U-Pb年龄和Sr-Nd同位素特征及其地质意义. 地球科学, 44(4): 1371-1388. doi: 10.3799/dqkx.2018.201
      张国全, 胡瑞忠, 商朋强, 等, 2007. 华南花岗岩型铀矿床成矿机理研究进展. 矿物岩石地球化学通报, 26(4): 399-404. doi: 10.3969/j.issn.1007-2802.2007.04.013
      张敏, 陈培荣, 黄国龙, 等, 2006a. 南岭龙源坝复式岩体的地球化学特征研究. 铀矿地质, 22(6): 336-344. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200606002.htm
      张敏, 陈培荣, 黄国龙, 等, 2006b. 南岭东段龙源坝复式岩体LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质学报, 80(7): 984-994. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200607004.htm
      张岳桥, 董树文, 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展. 地质力学学报, 25(5): 613-641. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905004.htm
      钟福军, 潘家永, 刘国奇, 等, 2014. 下庄"交点"型铀矿成矿地质特征及找矿意义. 矿产与地质, 28(5): 590-595. doi: 10.3969/j.issn.1001-5663.2014.05.011
      钟福军, 潘家永, 巫建华, 等, 2019. 粤北长江铀矿田辉长闪长岩的岩石成因及其与铀成矿的关系. 地球科学, 44(9): 3042-3059. doi: 10.3799/dqkx.2017.592
      钟福军, 潘家永, 许幼, 等, 2017. 南岭中段黄沙铀矿区黑云母与绿泥石的矿物化学特征及其对成岩成矿的约束. 高校地质学报, 23(4): 575-590. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201704002.htm
      朱捌, 2010. 地幔流体与铀成矿作用研究: 以诸广山南部铀矿田为例(博士学位论文). 成都: 成都理工大学.
      朱清波, 靳国栋, 赵希林, 等, 2020. 赣北晚中生代岭上超镁铁岩的岩石成因: 年代学与地球化学制约. 中国地质, 47(4): 1092-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004014.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)

      Article views (1584) PDF downloads(87) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return