Citation: | Zhang Huaisheng, Wang Mengyuan, Cai Wutian, Bian Chao, Liu Jinwei, 2023. Characteristics of Microbial Community Composition and Environmental Response in Deep Fluorinated Groundwater. Earth Science, 48(9): 3466-3479. doi: 10.3799/dqkx.2021.147 |
Albers, C. N., Ellegaard-Jensen, L., Harder, C. B., et al., 2015. Groundwater Chemistry Determines the Prokaryotic Community Structure of Waterworks Sand Filters. Environmental Science & Technology, 49(2): 839-846. https://doi.org/10.1021/es5046452
|
An, X. L., Chen, T. T., Zhao, H., et al., 2016. Assessment of Ecosystem Health of Baogang Tailings Groundwater Based on Microbiome Index of Biotic Integrity (M-IBI). Environmental Science, 37(9): 3413-3422 (in Chinese with English abstract).
|
Berger, T., Mathurin, F. A., Drake, H., et al., 2016. Fluoride Abundance and Controls in Fresh Groundwater in Quaternary Deposits and Bedrock Fractures in an Area with Fluorine-Rich Granitoid Rocks. Science of the Total Environment, 569-570: 948-960. https://doi.org/10.1016/j.scitotenv.2016.06.002
|
Dudley, B. D., Hughes, R. F., Ostertag, R., 2014. Groundwater Availability Mediates the Ecosystem Effects of an Invasion of Prosopis Pallida. Ecological Applications, 24(8): 1954-1971. https://doi.org/10.1890/13-1262.1
|
Fang, Y. H., Zheng, X. L., Peng, H., et al., 2019. Groundwater Quality Assessment Based on Optimization of Fuzzy Synthetic Evaluation. Earth Science Frontiers, 26(4): 301-306 (in Chinese with English abstract).
|
Fuge, R., 2019. Fluorine in the Environment, a Review of Its Sources and Geochemistry. Applied Geochemistry, 100: 393-406. https://doi.org/10.1016/j.apgeochem.2018.12.016
|
Gao, X. B., Luo, W. T., Luo, X. S., et al., 2019. Indigenous Microbes Induced Fluoride Release from Aquifer Sediments. Environmental Pollution, 252(Pt A): 580-590. https://doi.org/10.1016/j.envpol.2019.05.118
|
Griebler, C., Brielmann, H., Haberer, C. M., et al., 2016. Potential Impacts of Geothermal Energy Use and Storage of Heat on Groundwater Quality, Biodiversity, and Ecosystem Processes. Environmental Earth Sciences, 75(20): 1391. https://doi.org/10.1007/s12665-016-6207-z
|
Hao, Q. Y., Xu, X. T., Zhang, X. B., et al., 2020. Hydrochemical Characteristics and Genesis of High-Fluorine Shallow Groundwater in Yanggu Area of the Northwestern Shandong, China. Journal of Earth Sciences and Environment, 42(5): 668-677 (in Chinese with English abstract).
|
He, Z. L., Zhang, P., Wu, L. W., et al., 2018. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning. Mbio, 9(1): e02435-e02417. https://doi.org/10.1128/mBio.02435-17
|
Kodama, Y., Watanabe, K., 2004. Sulfuricurvum Kujiense Gen. Nov., Sp. Nov., a Facultatively Anaerobic, Chemolithoautotrophic, Sulfur-Oxidizing Bacterium Isolated from an Underground Crude-Oil Storage Cavity. International Journal of Systematic and Evolutionary Microbiology, 54(6): 2297-2300. https://doi.org/10.1099/ijs.0.63243-0
|
Kong, X. L., Wang, S. Q., Zhao, H., et al., 2015. Distribution Characteristics and Source of Fluoride in Groundwater in Lower Plain Area of North China Plain: A Case Study in Nanpi County. Environmental Science, 36(11): 4051-4059 (in Chinese with English abstract).
|
Kujala, K., Besold, J., Mikkonen, A., et al., 2020. Abundant and Diverse Arsenic-Metabolizing Microorganisms in Peatlands Treating Arsenic-Contaminated Mining Wastewaters. Environmental Microbiology, 22(4): 1572-1587. https://doi.org/10.1111/1462-2920.14922
|
Lau, M. C. Y., Kieft, T. L., Kuloyo, O., et al., 2016. An Oligotrophic Deep-Subsurface Community Dependent on Syntrophy is Dominated by Sulfur-Driven Autotrophic Denitrifiers. Proceedings of the National Academy of Sciences of the United States of America, 113(49): E7927-E7936. https://doi.org/10.1073/pnas.1612244113
|
Lerm, S., Westphal, A., Miethling-Graff, R., et al., 2013. Thermal Effects on Microbial Composition and Microbiologically Induced Corrosion and Mineral Precipitation Affecting Operation of a Geothermal Plant in a Deep Saline Aquifer. Extremophiles, 17(2): 311-327. https://doi.org/10.1007/s00792-013-0518-8
|
Li, N. Y., Han, Z. Y., Wang, S. C., et al., 2020. Impacts of Different Pollution Sources on the Microbial Community in Groundwater at Municipal Solid Waste Landfill Sites. China Environmental Science, 40(11): 4900-4910 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2020.11.031
|
Li, S., Cheng, J. M., Li, M. M., et al., 2016. Water Quality Characteristics and Evolution of Groundwater System Influenced by Human Exploitation Activity in Hengshui Area. South-to-North Water Transfers and Water Science & Technology, 14(3): 55-61, 100 (in Chinese with English abstract).
|
Magnabosco, C., Lin, L. H., Dong, H., et al., 2018. The Biomass and Biodiversity of the Continental Subsurface. Nature Geoscience, 11(10): 707-717. https://doi.org/10.1038/s41561-018-0221-6
|
Méheust, R., Castelle, C. J., Matheus Carnevali, P. B., et al., 2020. Groundwater Elusimicrobia are Metabolically Diverse Compared to Gut Microbiome Elusimicrobia and Some Have a Novel Nitrogenase Paralog. The ISME Journal, 14(12): 2907-2922. https://doi.org/10.1038/s41396-020-0716-1
|
Ning, Z., Cai, P. P., Zhang, M., et al., 2019. Abnormally Low Dissolved Inorganic Carbon in Petroleum Contaminated Groundwater Caused by Microbiological Geochemistry. Acta Scientiae Circumstantiae, 39(4): 1140-1147 (in Chinese with English abstract).
|
Patil, S. S., Adetutu, E. M., Rochow, J., et al., 2014. Sustainable Remediation: Electrochemically Assisted Microbial Dechlorination of Tetrachloroethene-Contaminated Groundwater. Microbial Biotechnology, 7(1): 54-63. https://doi.org/10.1111/1751-7915.12089
|
Qu, J. Y., Tong, M., Yuan, S. H., 2021. Effect and Mechanism of Fe(Ⅱ) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes. Earth Science, 46(2): 632-641 (in Chinese with English abstract).
|
Robinson, R. L. M., Palczewska, A., Palczewski, J., et al., 2017. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets. Journal of Chemical Information and Modeling, 57(8): 1773-1792. https://doi.org/10.1021/acs.jcim.6b00753
|
Ritter, C. D., Forster, D., Azevedo, J. A. R., et al., 2021. Assessing Biotic and Abiotic Interactions of Microorganisms in Amazonia through Co-Occurrence Networks and DNA Metabarcoding. Microbial Ecology, 82(3): 746-760. https://doi.org/10.1007/s00248-021-01719-6
|
Saccò, M., Blyth, A. J., Humphreys, W. F., et al., 2021. Rainfall as a Trigger of Ecological Cascade Effects in an Australian Groundwater Ecosystem. Scientific Reports, 11(1): 3694. https://doi.org/10.1038/s41598-021-83286-x
|
Sherry, A., Gray, N. D., Ditchfield, A. K., et al., 2013. Anaerobic Biodegradation of Crude Oil under Sulphate-Reducing Conditions Leads to only Modest Enrichment of Recognized Sulphate-Reducing Taxa. International Biodeterioration & Biodegradation, 81: 105-113. https://doi.org/10.1016/j.ibiod.2012.04.009
|
Tai, V., James, E. R., Nalepa, C. A., et al., 2015. The Role of Host Phylogeny Varies in Shaping Microbial Diversity in the Hindguts of Lower Termites. Applied and Environmental Microbiology, 81(3): 1059-1070. https://doi.org/10.1128/AEM.02945-14
|
Wang, Y. T., Li, J. X., Xue, X. B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320 (in Chinese with English abstract).
|
Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
|
Zaitseva, S. V., Lavrentieva, E. V., Radnagurueva, A. A., et al., 2017. Distribution of Acetothermia-Dominated Microbial Communities in Alkaline Hot Springs of Baikal Rift Zone. PeerJ Preprints, 5: e3492v1. https://doi.org/10.7287/peerj.preprints.3492v1.
|
Zhang, X., Gao, X. B., Li, C. C., et al., 2019. Fluoride Contributes to the Shaping of Microbial Community in High Fluoride Groundwater in Qiji County, Yuncheng City, China. Scientific Reports, 9: 14488. https://doi.org/10.1038/s41598-019-50914-6
|
Zhang, Z. G., He, J. T., Wang, L., et al., 2018. Hydrochemical Characteristics and Evolution Processes of Deep Groundwater in Hengshui Area. Geoscience, 32(3): 565-573 (in Chinese with English abstract).
|
安新丽, 陈廷廷, 赵晗, 等, 2016. 基于微生物生物完整性指数的地下水生态系统健康评价: 以包钢稀土尾矿库周边地下水生态系统为例. 环境科学, 37(9): 3413-3422. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201609020.htm
|
方运海, 郑西来, 彭辉, 等, 2019. 基于模糊综合优化模型的地下水质量评价. 地学前缘, 26(4): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904037.htm
|
郝启勇, 徐晓天, 张心彬, 等, 2020. 鲁西北阳谷地区浅层高氟地下水化学特征及成因. 地球科学与环境学报, 42(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm
|
孔晓乐, 王仕琴, 赵焕, 等, 2015. 华北低平原区地下水中氟分布特征及形成原因: 以南皮县为例. 环境科学, 36(11): 4051-4059. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201511014.htm
|
李娜英, 韩智勇, 王双超, 等, 2020. 多污染源作用下填埋场地下水微生物群落分析. 中国环境科学, 40(11): 4900-4910. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202011037.htm
|
李莎, 成建梅, 李敏敏, 等, 2016. 人类开采活动影响下的衡水地区地下水水质特征及演化. 南水北调与水利科技, 14(3): 55-61, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201603010.htm
|
宁卓, 蔡萍萍, 张敏, 等, 2019. 某石油污染地下水溶解性无机碳低异常的微生物地球化学成因探析. 环境科学学报, 39(4): 1140-1147. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201904013.htm
|
屈婧祎, 童曼, 袁松虎, 2021. 二价铁氧化对铁锰循环功能微生物活性的影响及机制. 地球科学, 46(2): 632-641. doi: 10.3799/dqkx.2020.029
|
王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
|
徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
|
张振国, 何江涛, 王磊, 等, 2018. 衡水地区深层地下水水化学特征及其演化过程. 现代地质, 32(3): 565-573. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201803014.htm
|