• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Zhang Huaisheng, Wang Mengyuan, Cai Wutian, Bian Chao, Liu Jinwei, 2023. Characteristics of Microbial Community Composition and Environmental Response in Deep Fluorinated Groundwater. Earth Science, 48(9): 3466-3479. doi: 10.3799/dqkx.2021.147
    Citation: Zhang Huaisheng, Wang Mengyuan, Cai Wutian, Bian Chao, Liu Jinwei, 2023. Characteristics of Microbial Community Composition and Environmental Response in Deep Fluorinated Groundwater. Earth Science, 48(9): 3466-3479. doi: 10.3799/dqkx.2021.147

    Characteristics of Microbial Community Composition and Environmental Response in Deep Fluorinated Groundwater

    doi: 10.3799/dqkx.2021.147
    • Received Date: 2021-07-03
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • Conducting microbiological research in unique geological formations is of significant value, yet related studies within deep fluorine-rich groundwater environments remain insufficient. To dress this gap, 9 groundwater source well samples were collected from the 3rd hydrous group of Taocheng District of Hengshui City, China, and the water chemistry analysis and microbial 16S RNA gene V4-V5 region sequencing were performed. The results showed that the deep groundwater in the studied area was slightly alkaline with relatively low TDS and the average content of F was 1.01 mg/L. The overall water chemistry types were characterized as Cl·SO4-Na and HCO3·Cl·SO4-Na types. The influence of F content on the abundance and diversity of groundwater microorganisms was obvious, with 39 and 126 genera unique to high vs. low fluoride groundwater, respectively. Groundwater was dominated by Proteobacteria at the phylum level (47.67%-76.96%), with a high dispersion of taxa at the genus level and no obvious dominant genera. On the whole, the composition of the bacteria in groundwater of the study area is sensitive and strongly correlates with water chemical processes. NO3, F, DO and sampling depth are predominantly influence microbial composition, and DO also critically supports the microbial abundance levels in groundwater in the study area.

       

    • loading
    • Albers, C. N., Ellegaard-Jensen, L., Harder, C. B., et al., 2015. Groundwater Chemistry Determines the Prokaryotic Community Structure of Waterworks Sand Filters. Environmental Science & Technology, 49(2): 839-846. https://doi.org/10.1021/es5046452
      An, X. L., Chen, T. T., Zhao, H., et al., 2016. Assessment of Ecosystem Health of Baogang Tailings Groundwater Based on Microbiome Index of Biotic Integrity (M-IBI). Environmental Science, 37(9): 3413-3422 (in Chinese with English abstract).
      Berger, T., Mathurin, F. A., Drake, H., et al., 2016. Fluoride Abundance and Controls in Fresh Groundwater in Quaternary Deposits and Bedrock Fractures in an Area with Fluorine-Rich Granitoid Rocks. Science of the Total Environment, 569-570: 948-960. https://doi.org/10.1016/j.scitotenv.2016.06.002
      Dudley, B. D., Hughes, R. F., Ostertag, R., 2014. Groundwater Availability Mediates the Ecosystem Effects of an Invasion of Prosopis Pallida. Ecological Applications, 24(8): 1954-1971. https://doi.org/10.1890/13-1262.1
      Fang, Y. H., Zheng, X. L., Peng, H., et al., 2019. Groundwater Quality Assessment Based on Optimization of Fuzzy Synthetic Evaluation. Earth Science Frontiers, 26(4): 301-306 (in Chinese with English abstract).
      Fuge, R., 2019. Fluorine in the Environment, a Review of Its Sources and Geochemistry. Applied Geochemistry, 100: 393-406. https://doi.org/10.1016/j.apgeochem.2018.12.016
      Gao, X. B., Luo, W. T., Luo, X. S., et al., 2019. Indigenous Microbes Induced Fluoride Release from Aquifer Sediments. Environmental Pollution, 252(Pt A): 580-590. https://doi.org/10.1016/j.envpol.2019.05.118
      Griebler, C., Brielmann, H., Haberer, C. M., et al., 2016. Potential Impacts of Geothermal Energy Use and Storage of Heat on Groundwater Quality, Biodiversity, and Ecosystem Processes. Environmental Earth Sciences, 75(20): 1391. https://doi.org/10.1007/s12665-016-6207-z
      Hao, Q. Y., Xu, X. T., Zhang, X. B., et al., 2020. Hydrochemical Characteristics and Genesis of High-Fluorine Shallow Groundwater in Yanggu Area of the Northwestern Shandong, China. Journal of Earth Sciences and Environment, 42(5): 668-677 (in Chinese with English abstract).
      He, Z. L., Zhang, P., Wu, L. W., et al., 2018. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning. Mbio, 9(1): e02435-e02417. https://doi.org/10.1128/mBio.02435-17
      Kodama, Y., Watanabe, K., 2004. Sulfuricurvum Kujiense Gen. Nov., Sp. Nov., a Facultatively Anaerobic, Chemolithoautotrophic, Sulfur-Oxidizing Bacterium Isolated from an Underground Crude-Oil Storage Cavity. International Journal of Systematic and Evolutionary Microbiology, 54(6): 2297-2300. https://doi.org/10.1099/ijs.0.63243-0
      Kong, X. L., Wang, S. Q., Zhao, H., et al., 2015. Distribution Characteristics and Source of Fluoride in Groundwater in Lower Plain Area of North China Plain: A Case Study in Nanpi County. Environmental Science, 36(11): 4051-4059 (in Chinese with English abstract).
      Kujala, K., Besold, J., Mikkonen, A., et al., 2020. Abundant and Diverse Arsenic-Metabolizing Microorganisms in Peatlands Treating Arsenic-Contaminated Mining Wastewaters. Environmental Microbiology, 22(4): 1572-1587. https://doi.org/10.1111/1462-2920.14922
      Lau, M. C. Y., Kieft, T. L., Kuloyo, O., et al., 2016. An Oligotrophic Deep-Subsurface Community Dependent on Syntrophy is Dominated by Sulfur-Driven Autotrophic Denitrifiers. Proceedings of the National Academy of Sciences of the United States of America, 113(49): E7927-E7936. https://doi.org/10.1073/pnas.1612244113
      Lerm, S., Westphal, A., Miethling-Graff, R., et al., 2013. Thermal Effects on Microbial Composition and Microbiologically Induced Corrosion and Mineral Precipitation Affecting Operation of a Geothermal Plant in a Deep Saline Aquifer. Extremophiles, 17(2): 311-327. https://doi.org/10.1007/s00792-013-0518-8
      Li, N. Y., Han, Z. Y., Wang, S. C., et al., 2020. Impacts of Different Pollution Sources on the Microbial Community in Groundwater at Municipal Solid Waste Landfill Sites. China Environmental Science, 40(11): 4900-4910 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2020.11.031
      Li, S., Cheng, J. M., Li, M. M., et al., 2016. Water Quality Characteristics and Evolution of Groundwater System Influenced by Human Exploitation Activity in Hengshui Area. South-to-North Water Transfers and Water Science & Technology, 14(3): 55-61, 100 (in Chinese with English abstract).
      Magnabosco, C., Lin, L. H., Dong, H., et al., 2018. The Biomass and Biodiversity of the Continental Subsurface. Nature Geoscience, 11(10): 707-717. https://doi.org/10.1038/s41561-018-0221-6
      Méheust, R., Castelle, C. J., Matheus Carnevali, P. B., et al., 2020. Groundwater Elusimicrobia are Metabolically Diverse Compared to Gut Microbiome Elusimicrobia and Some Have a Novel Nitrogenase Paralog. The ISME Journal, 14(12): 2907-2922. https://doi.org/10.1038/s41396-020-0716-1
      Ning, Z., Cai, P. P., Zhang, M., et al., 2019. Abnormally Low Dissolved Inorganic Carbon in Petroleum Contaminated Groundwater Caused by Microbiological Geochemistry. Acta Scientiae Circumstantiae, 39(4): 1140-1147 (in Chinese with English abstract).
      Patil, S. S., Adetutu, E. M., Rochow, J., et al., 2014. Sustainable Remediation: Electrochemically Assisted Microbial Dechlorination of Tetrachloroethene-Contaminated Groundwater. Microbial Biotechnology, 7(1): 54-63. https://doi.org/10.1111/1751-7915.12089
      Qu, J. Y., Tong, M., Yuan, S. H., 2021. Effect and Mechanism of Fe(Ⅱ) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes. Earth Science, 46(2): 632-641 (in Chinese with English abstract).
      Robinson, R. L. M., Palczewska, A., Palczewski, J., et al., 2017. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets. Journal of Chemical Information and Modeling, 57(8): 1773-1792. https://doi.org/10.1021/acs.jcim.6b00753
      Ritter, C. D., Forster, D., Azevedo, J. A. R., et al., 2021. Assessing Biotic and Abiotic Interactions of Microorganisms in Amazonia through Co-Occurrence Networks and DNA Metabarcoding. Microbial Ecology, 82(3): 746-760. https://doi.org/10.1007/s00248-021-01719-6
      Saccò, M., Blyth, A. J., Humphreys, W. F., et al., 2021. Rainfall as a Trigger of Ecological Cascade Effects in an Australian Groundwater Ecosystem. Scientific Reports, 11(1): 3694. https://doi.org/10.1038/s41598-021-83286-x
      Sherry, A., Gray, N. D., Ditchfield, A. K., et al., 2013. Anaerobic Biodegradation of Crude Oil under Sulphate-Reducing Conditions Leads to only Modest Enrichment of Recognized Sulphate-Reducing Taxa. International Biodeterioration & Biodegradation, 81: 105-113. https://doi.org/10.1016/j.ibiod.2012.04.009
      Tai, V., James, E. R., Nalepa, C. A., et al., 2015. The Role of Host Phylogeny Varies in Shaping Microbial Diversity in the Hindguts of Lower Termites. Applied and Environmental Microbiology, 81(3): 1059-1070. https://doi.org/10.1128/AEM.02945-14
      Wang, Y. T., Li, J. X., Xue, X. B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320 (in Chinese with English abstract).
      Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
      Zaitseva, S. V., Lavrentieva, E. V., Radnagurueva, A. A., et al., 2017. Distribution of Acetothermia-Dominated Microbial Communities in Alkaline Hot Springs of Baikal Rift Zone. PeerJ Preprints, 5: e3492v1. https://doi.org/10.7287/peerj.preprints.3492v1.
      Zhang, X., Gao, X. B., Li, C. C., et al., 2019. Fluoride Contributes to the Shaping of Microbial Community in High Fluoride Groundwater in Qiji County, Yuncheng City, China. Scientific Reports, 9: 14488. https://doi.org/10.1038/s41598-019-50914-6
      Zhang, Z. G., He, J. T., Wang, L., et al., 2018. Hydrochemical Characteristics and Evolution Processes of Deep Groundwater in Hengshui Area. Geoscience, 32(3): 565-573 (in Chinese with English abstract).
      安新丽, 陈廷廷, 赵晗, 等, 2016. 基于微生物生物完整性指数的地下水生态系统健康评价: 以包钢稀土尾矿库周边地下水生态系统为例. 环境科学, 37(9): 3413-3422. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201609020.htm
      方运海, 郑西来, 彭辉, 等, 2019. 基于模糊综合优化模型的地下水质量评价. 地学前缘, 26(4): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904037.htm
      郝启勇, 徐晓天, 张心彬, 等, 2020. 鲁西北阳谷地区浅层高氟地下水化学特征及成因. 地球科学与环境学报, 42(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm
      孔晓乐, 王仕琴, 赵焕, 等, 2015. 华北低平原区地下水中氟分布特征及形成原因: 以南皮县为例. 环境科学, 36(11): 4051-4059. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201511014.htm
      李娜英, 韩智勇, 王双超, 等, 2020. 多污染源作用下填埋场地下水微生物群落分析. 中国环境科学, 40(11): 4900-4910. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202011037.htm
      李莎, 成建梅, 李敏敏, 等, 2016. 人类开采活动影响下的衡水地区地下水水质特征及演化. 南水北调与水利科技, 14(3): 55-61, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201603010.htm
      宁卓, 蔡萍萍, 张敏, 等, 2019. 某石油污染地下水溶解性无机碳低异常的微生物地球化学成因探析. 环境科学学报, 39(4): 1140-1147. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201904013.htm
      屈婧祎, 童曼, 袁松虎, 2021. 二价铁氧化对铁锰循环功能微生物活性的影响及机制. 地球科学, 46(2): 632-641. doi: 10.3799/dqkx.2020.029
      王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
      徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
      张振国, 何江涛, 王磊, 等, 2018. 衡水地区深层地下水水化学特征及其演化过程. 现代地质, 32(3): 565-573. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201803014.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(2)

      Article views (804) PDF downloads(42) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return