Citation: | Duan Menglong, Xie Chaoming, Wang Bin, Song Yuhang, Hao Yujie, 2022. Ocean Island Rock Assembly and Its Tectonic Significance in Tangga⁃Sumdo Area, Tibet. Earth Science, 47(8): 2968-2984. doi: 10.3799/dqkx.2021.156 |
Anderson, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
|
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67-95. https://doi.org/10.1016/s0377-0273(00)00182-7
|
Chen, S.Y., Yang, J.S., Luo, L.Q., et al., 2007. MORB-Type Eclogites in the Lhasa Block, Tibet. Geological Bulletin of China, (10): 1327-1339(in Chinese with English abstract).
|
Chen, S.Y., 2010. The Development of Sumdo Suture in the Lhasa Block, Tibet(Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract).
|
Cheng, H., Liu, Y. M., Vervoort, J. D., et al., 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichronometric Dating on the Bailang Eclogite Constrains the Closure Timing of the Paleo-Tethys Ocean in the Lhasa Terrane, Tibet. Gondwana Research, 28(4): 1482-1499. https://doi.org/10.1016/j.gr.2014.09.017
|
Cheng, H., Zhang, C., Vervoort, J. D., et al., 2012. Zircon U-Pb and Garnet Lu-Hf Geochronology of Eclogites from the Lhasa Block, Tibet. Lithos, 155: 341-359. https://doi.org/10.1016/j.lithos.2012.09.011
|
Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1/2/3/4): 1-37. https://doi.org/10.1016/0009-2541(93)90140-e
|
Cousens, B. L., Clague, D. A., Sharp, W. D., 2003. Chronology, Chemistry, and Origin of Trachytes from Hualalai Volcano, Hawaii. Geochemistry, Geophysics, Geosystems, 4(9): 1078-1105. https://doi.org/10.1029/2003gc000560
|
Duan, M.L., Xie, C.M., Fan, J.J., et al., 2019. Identification of the Middle Triassic Oceanic Crust of the Sumdo in the Tibet Plateau and Its Constraints on the Evolution of the Sumdo Paleo-Tethys Ocean. Earth Science, 44(7): 2249-2264(in Chinese with English abstract).
|
Fan, J. J., Li, C., Xu, J. X., et al., 2014. Petrology, Geochemistry, and Geological Significance of the Nadong Ocean Island, Banggongco-Nujiang Suture, Tibetan Plateau. International Geology Review, 56(8): 915-928. https://doi.org/10.1080/00206814.2014.900651
|
Fan, J. J., Li, C., Wang, M., et al., 2015. Features, Provenance, and Tectonic Significance of Carboniferous-Permian Glacial Marine Diamictites in the Southern Qiangtang-Baoshan Block, Tibetan Plateau. Gondwana Research, 28(4): 1530-1542. https://doi.org/10.1016/j.gr.2014.10.015
|
Fan, J. J., Li, C., Xie, C. M., et al., 2017. Remnants of Late Permian-Middle Triassic Ocean Islands in Northern Tibet: Implications for the Late-Stage Evolution of the Paleo-Tethys Ocean. Gondwana Research, 44: 7-21. https://doi.org/10.1016/j.gr.2016.10.020
|
Fan, J.J., Niu, Y.L., Liu, Y.M., et al., 2021. Timing of Closure of the Meso-Tethys Ocean: Constraints from Remnants of a 141-135 Ma Ocean Island within the Bangong-Nujiang Suture Zone, Tibetan Plateau. GSA Bulletin, 133(9/10): 1875-1889. https://doi.org/10.1130/b35896.1
|
Fan, J.J., Li, C., Niu, Y.L., et al., 2021. Identification Method and Geological Significance of the Intraplate Ocean Island-Seamount Fragments in the Orogenic Belt. Earth Science, 46(02): 381-404(in Chinese with English abstract).
|
Gao, J.F., Lu, J.J., Lai, M.Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICP-MS. Journal of Nanjing University (Natural Science Edition), 39(6): 844-850(in Chinese with English abstract).
|
Geng, Q.R., Wang, L.Q., Pan, G.T., 2007. Carboniferous Marginal Rifting in Gangdese: Volcanic Rocksand Stratigraphic Constraints, Xizang (Tibet), China. Acta Geologica Sinica, 81(9): 1259-1276(in Chinese with English abstract).
|
Horn, I., Foley, S. F., Jackson, S. E., et al., 1994. Experimentally Determined Partitioning of High Field Strength- and Selected Transition Elements between Spinel and Basaltic Melt. Chemical Geology, 117(1/2/3/4): 193-218. https://doi.org/10.1016/0009-2541(94)90128-7
|
Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2018a. Precambrian Origin of the North Lhasa Terrane, Tibetan Plateau: Constraint from Early Cryogenian Back-Arc Magmatism. Precambrian Research, 313: 51-67. https://doi.org/10.1016/j.precamres.2018.05.014
|
Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2018b. Ediacaran Magmatism in the North Lhasa Terrane, Tibet and its Tectonic Implications. Precambrian Research, 307: 137-154. https://doi.org/10.1016/j.precamres.2018.01.012
|
Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2018c. Middle Neoproterozoic (ca. 760 Ma) Arc and Back-Arc System in the North Lhasa Terrane, Tibet, Inferred from Coeval N-MORB- and Arc-Type Gabbros. Precambrian Research, 316: 275-290. https://doi.org/10.1016/j.precamres.2018.08.022
|
Hu, P. Y., Zhai, Q. G., Zhao, G. C., et al., 2019. Late Cryogenian Magmatic Activity in the North Lhasa Terrane, Tibet: Implication of Slab Break-Off Process. Gondwana Research, 71: 129-149. https://doi.org/10.1016/j.gr.2019.02.005
|
Huang, Y.D., Xu, C., Zhang, X.L., et al., 2021. An Updated Database and Spatial Distribution of Landslides Triggered by the Milin, Tibet Mw6.4 Earthquake of 18 November 2017. Journal of Earth Science, 32(5): 1069-1078. https://doi.org/10.1007/s12583-021-1433-z
|
Humphreys, E. R., Niu, Y. L., 2009. On the Composition of Ocean Island Basalts (OIB): The Effects of Lithospheric Thickness Variation and Mantle Metasomatism. Lithos, 112(1/2): 118-136. https://doi.org/10.1016/j.lithos.2009.04.038
|
Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2012. Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Terrane Assembly Related to the Paleo-Tethyan Evolution. The Journal of Geology, 120(5): 531-541. https://doi.org/10.1086/666742
|
Jochum, K. P., Arndt, N. T., Hofmann, A. W., 1991. Nb-Th-La in Komatiites and Basalts: Constraints on Komatiite Petrogenesis and Mantle Evolution. Earth and Planetary Science Letters, 107(2): 272-289. https://doi.org/10.1016/0012-821x(91)90076-t
|
Li, Z. L., Yang, J. S., Xu, Z. Q., et al., 2009. Geochemistry and Sm-Nd and Rb-Sr Isotopic Composition of Eclogite in the Lhasa Terrane, Tibet, and Its Geological Significance. Lithos, 109(3/4): 240-247. https://doi.org/10.1016/j.lithos.2009.01.004
|
Li, G.M., Zhang, L.K., Wu, J.Y., et al., 2020. Reestablishment and Scientific Significance of the Ocean Plate Geology in the Southern Tibet Plateau, China. Sedimentary Geology and Tethyan Geology, 40(1): 1-14(in Chinese with English abstract).
|
Lu, Z.Y., 2019. The Establishment of "Zhikong-Songduo Ocean" in the Eastern Gangdese, Tibet: a New Evidence from Pairigang Ocean Island(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
|
Ludwing, K.R., 2003. User's Manual for Isoplot Ex, Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. 4, Berkeley, 1-70.
|
Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3/4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
|
Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
|
Niu, Y. L., 2009. Some Basic Concepts and Problems on the Petrogenesis of Intra-Plate Ocean Island Basalts. Chinese Science Bulletin, 54(22): 4148-4160. https://doi.org/10.1007/s11434-009-0668-3
|
Niu, Y. L., Wilson, M., Humphreys, E. R., et al., 2011. The Origin of Intra-Plate Ocean Island Basalts (OIB): The Lid Effect and its Geodynamic Implications. Journal of Petrology, 52(7/8): 1443-1468. https://doi.org/10.1093/petrology/egr030
|
Niu, Y. L., Green, D. H., 2018. The Petrological Control on the Lithosphere-Asthenosphere Boundary (LAB) beneath Ocean Basins. Earth-Science Reviews, 185: 301-307. https://doi.org/10.1016/j.earscirev.2018.06.011
|
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192
|
Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
|
Ramalho, R., Helffrich, G., Schmidt, D. N., et al., 2010b. Tracers of Uplift and Subsidence in the Cape Verde Archipelago. Journal of the Geological Society, 167(3): 519-538. https://doi.org/10.1144/0016-76492009-056
|
Ramalho, R. S., Helffrich, G., Cosca, M., et al., 2010a. Vertical Movements of Ocean Island Volcanoes: Insights from a Stationary Plate Environment. Marine Geology, 275(1/2/3/4): 84-95. https://doi.org/10.1016/j.margeo.2010.04.009
|
Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, London, 1-64.
|
Rooney, T. O., 2010. Geochemical Evidence of Lithospheric Thinning in the Southern Main Ethiopian Rift. Lithos, 117(1/2/3/4): 33-48. https://doi.org/10.1016/j.lithos.2010.02.002
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Schwandt, C. S., McKay, G. A., 1998. Rare Earth Element Partition Coefficients from Enstatite/melt Synthesis Experiments. Geochimica et Cosmochimica Acta, 62(16): 2845-2848. https://doi.org/10.1016/s0016-7037(98)00233-6
|
Thompson, G., Smith, I., Malpas, J., 2001. Origin of Oceanic Phonolites by Crystal Fractionation and the Problem of the Daly Gap: An Example from Rarotonga. Contributions to Mineralogy and Petrology, 142(3): 336-346. https://doi.org/10.1007/s004100100294
|
Thompson, R.N., Morrison, M.A., Hendry, G.L., et al., 1984. An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach[and Discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 310(1514).
|
Wang, B., Xie, C. M., Fan, J. J., et al., 2018. Genesis and Tectonic Setting of Middle Permian OIB-Type Mafic Rocks in the Sumdo Area, Southern Lhasa Terrane. Lithos, 324-325: 429-438. https://doi.org/10.1016/j.lithos.2018.11.015
|
Wang, B., Xie, C. M., Dong, Y. S., et al., 2021. Middle Permian Adakitic Granite Dikes in the Sumdo Region, Central Lhasa Terrane, Central Tibet: Implications for the Subduction of the Sumdo Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 205: 104610. https://doi.org/10.1016/j.jseaes.2020.104610
|
Wang, B., Xie, C.M., Li, C., et al., 2017. The Discovery of Wenmulang Ophiolite in Songduo Area of the Tibetan Plateau and Its Geological Significance. Geological Bulletin of China, 36(11): 2076-2081(in Chinese with English abstract).
|
Wang, B., 2019. Recognition and Tectonic Significance of Sumdo Ophiolite, Tibet(Dissertation). Jilin University, Changchun(in Chinese with English abstract).
|
Wang, X. H., Lang, X. H., Tang, J. X., et al., 2019. Early-Middle Jurassic (182-170 Ma) Ruocuo Adakitic Porphyries, Southern Margin of the Lhasa Terrane, Tibet: Implications for Geodynamic Setting and Porphyry Cu-Au Mineralization. Journal of Asian Earth Sciences, 173: 336-351. https://doi.org/10.1016/j.jseaes.2019.01.042
|
Wang, X. H., Lang, X. H., Tang, J.X., et al., 2020. Early Carboniferous Back-Arc Rifting-Related Magmatism in Southern Tibet: Implications for the History of the Lhasa Terrane Separation from Gondwana. Tectonics, 39(10): 1-10. https://doi.org/10.1029/2020tc006237
|
Weller, O. M., St-Onge, M. R., Rayner, N., et al., 2016. U-Pb Zircon Geochronology and Phase Equilibria Modelling of a Mafic Eclogite from the Sumdo Complex of South-East Tibet: Insights into Prograde Zircon Growth and the Assembly of the Tibetan Plateau. Lithos, 262: 729-741. https://doi.org/10.1016/j.lithos.2016.06.005
|
Wilson, M.B., 1989. Igneous Petrogenesis. A Global Tectonic Approach. Geological Magazine, 126(4).
|
Winchester, J. A., Floyd, P. A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. Earth and Planetary Science Letters, 28(3): 459-469. https://doi.org/10.1016/0012-821x(76)90207-7
|
Wu, Y.B., Zheng, Y.F., 2004. Study on the Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, (16): 1589-1604(in Chinese with Englishabstract).
|
Wu, X.Y., Wang, Q., Zhu, D.C., et al., 2013. Origin of the Early Carboniferous Granitoids in the Southern Margin of the Lhasa Terrane and Its Implication for the Opening of the Songdo Tethyan Ocean. Acta PetrologicaSinica, 29(11) : 3716-3730(in Chinese with English abstract).
|
Xie, C.M., Song, Y.H., Wang, M., et al., 2019. Age and Provenance of Sumdo Formation in Central Gangdise, TibetanPlateau: Detrital Zircon U-Pb Geochronological Evidence. Earth Science, 44(7): 2224-2236(in Chinese with English abstract).
|
Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145-168. https://doi.org/10.1016/s0024-4937(01)00055-x
|
Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet: A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1): 76-89. https://doi.org/10.1016/j.jseaes.2008.04.001
|
Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
|
Zhang, C., Bader, T., Zhang, L. M., et al., 2018. Metamorphic Evolution and Age Constraints of the Garnet-Bearing Mica Schist from the Xindaduo Area of the Sumdo (U)HP Metamorphic Belt, Tibet. Geological Magazine, 156(7): 1175-1189. https://doi.org/10.1017/s001675681800033x
|
Zhang, C., Bader, T., van Roermund, H., et al., 2019. The Metamorphic Evolution and Tectonic Significance of the Sumdo HP-UHP Metamorphic Terrane, Central-South Lhasa Block, Tibet. Geological Society, London, Special Publications, 474(1): 209-229. https://doi.org/10.1144/sp474.4
|
Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse Throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 268(3/4): 298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008
|
Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension- and Arc-Type Magmatism in Southern Tibet: Paleogeographic Implications. Geological Society of America Bulletin, 122(7/8): 979-993. https://doi.org/10.1130/b30062.1
|
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
|
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024
|
陈松永, 杨经绥, 罗立强, 等, 2007. 西藏拉萨地块MORB型榴辉岩的岩石地球化学特征. 地质通报, 26 (10): 1327-1339. doi: 10.3969/j.issn.1671-2552.2007.10.011
|
陈松永, 2010. 西藏拉萨地块中古特提斯缝合带的厘定(博士毕业论文). 北京: 中国地质科学院.
|
段梦龙, 解超明, 范建军, 等, 2019. 青藏高原松多中三叠世洋壳的识别及其对松多古特提斯洋演化的制约. 地球科学, 44(7): 2249-2264. doi: 10.3799/dqkx.2019.100
|
范建军, 李才, 牛耀龄, 等, 2021. 造山带板内洋岛-海山残片的识别及地质意义. 地球科学, 46(2): 381-404. doi: 10.3799/dqkx.2020.348
|
高剑峰, 陆建军, 赖鸣远, 等, 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), (6): 844-850. doi: 10.3321/j.issn:0469-5097.2003.06.014
|
耿全如, 王立全, 潘桂棠, 等, 2007. 西藏冈底斯带石炭纪陆缘裂陷作用: 火山岩和地层学证据. 地质学报, 81(9): 1259-1276. doi: 10.3321/j.issn:0001-5717.2007.09.011
|
李光明, 张林奎, 吴建阳, 等, 2020. 青藏高原南部洋板块地质重建及科学意义. 沉积与特提斯地质, 40(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202001001.htm
|
卢志友, 2019. 西藏东冈底斯"直孔-松多洋"的确立(博士毕业论文). 成都: 成都理工大学.
|
王斌, 解超明, 李才, 等, 2017. 青藏高原松多地区温木朗蛇绿岩的发现及其地质意义. 地质通报, 36(11): 2076-2081. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201711018.htm
|
王斌, 2019. 西藏松多地区蛇绿岩的识别及构造意义(博士毕业论文). 长春: 吉林大学.
|
吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, (16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
|
吴兴源, 王青, 朱弟成, 等, 2013. 拉萨地体南缘早石炭世花岗岩类的起源及其对松多特提斯洋开启的意义. 岩石学报, 29(11): 3716-3730. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311006.htm
|
解超明, 宋宇航, 王明, 等, 2019. 冈底斯中部松多岩组形成时代及物源: 来自碎屑锆石U-Pb年代学证据. 地球科学, 44(7): 2224-2236. doi: 10.3799/dqkx.2019.024
|