• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Li Huiwen, Dong Man, Tian Ning, Chen Lin, Kai Lulu, Luo Genming, Yang Hao, 2022. Paleoenvironmental Implications of the Middle Jurassic Phoenicopsis angustifolia Heer in Shaerhu, Xinjiang. Earth Science, 47(2): 532-543. doi: 10.3799/dqkx.2021.165
    Citation: Li Huiwen, Dong Man, Tian Ning, Chen Lin, Kai Lulu, Luo Genming, Yang Hao, 2022. Paleoenvironmental Implications of the Middle Jurassic Phoenicopsis angustifolia Heer in Shaerhu, Xinjiang. Earth Science, 47(2): 532-543. doi: 10.3799/dqkx.2021.165

    Paleoenvironmental Implications of the Middle Jurassic Phoenicopsis angustifolia Heer in Shaerhu, Xinjiang

    doi: 10.3799/dqkx.2021.165
    • Received Date: 2021-08-23
    • Publish Date: 2022-02-25
    • The Middle Jurassic Xinshanyao Formation yields abundant and diverse fossil Ginkgophytes in the Shaerhu Coalfield of Xinjiang, NW China. Four leaf compression fossil of Phoenicopsis angustifolia Heer were selected from this horizon for calculating the epidermal stomatal parameters and their isotope carbon composition of leaf cuticles. On this basis, the Middle Jurassic (Aalenian-Bajocian) paleo-atmospheric CO2 concentration, paleo-temperature, and paleo-altitude of Shaerhu region of were tentatively reconstructed. Additionally, the water use efficiency of the current Ph. angustifolia was also calculated. The results show that the average stomatal index (SI) of Phoenicopsis angustifolia Heer is 5.90%. The paleo-atmospheric CO2 concentration obtained by the stomatal ratio method is (1 240.16±122.75)×10-6, which is within the credible error range of the GEOCARB Ⅲ. The average value of the stable carbon isotope δ13Cp of plant fossils is -23.07‰, and its water use efficiency (WUE) is calculated to be 272.06 mmol/mol. The paleo-average temperature of Shaerhu is about 16.8~20.7℃, the paleo-altitude is 196.7 m, which generally reflects Shaerhu Coalfield was a kind of environment with high CO2 concentration, warm and humid climate in the early Middle Jurassic.

       

    • loading
    • Arens, N.C., Jahren, A.H., Amundson, R., 2000. Can C3 Plants Faithfully Record the Carbon Isotopic Composition of Atmospheric Carbon Dioxide? Paleobiology, 26(1): 137-164. https://doi.org/10.1666/0094-8373(2000)026<0137:CCPFRT>2.0.CO;2 doi: 10.1666/0094-8373(2000)026<0137:CCPFRT>2.0.CO;2
      Beerling, D.J., Royer, D.L., 2002a. Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153(3): 387-397. https://doi.org/10.1046/J.0028-646X.2001.00335.X doi: 10.1046/j.0028-646X.2001.00335.x
      Beerling, D. J., Royer, D. L., 2002b. Fossil Plants as Indicators of the Phanerozoic Global Carbon Cycle. Annual Review of Earth and Planetary Sciences, 30(1): 527-556. https://doi.org/10.1146/annurev.earth.30.091201.141413
      Berner, R.A., 1994. GEOCARB Ⅱ: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 294(2): 56-91. https://doi.org/10.2475/ajs.294.1.56
      Berner, R.A., Kothavala, Z., 2001. GEOCARB Ⅲ: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 301(2): 182-204. https://doi.org/10.2475/ajs.301.2.182
      Chakraborty, S., Jana, B. N., Bhattacharya, S. K., et al., 2011. Carbon Isotopic Composition of Fossil Leaves from the Early Cretaceous Sediments of Western India. Journal of Earth System Science, 120(4): 703-711. https://doi.org/10.1007/s12040-011-0098-x
      Chen, J.P., Huang, D.F., Li, J.C., et al., 1999. Main Source Rocks of Petroleum from Jurassic Coal-Bearing Strata in the Turpan-Hami Basin, Northest China. Acta Geologica Sinica, (2): 140-152(in Chinese with English abstract).
      Chen, Y.Q., Ma, L.T., Peng, L., et al., 2017. The Paleoenvironmental Significance of Ginkgoites Aganzhenensis Yang from the Middle Jurassic in the Baojishan Basin, Gansu Province. Acta Sedimentologica Sinica, 35(1): 57-66(in Chinese with English abstract).
      Ding, S.T., Sun, B.N., Wu, J.Y., et al., 2010. Cuticular Composition and Carbon Isotope Characteristics of Jurassic PhoenicopsisPhoenicopsisAngustifolia Heer from Huating in Gansu Province, China. Journal of Lanzhou University(Natural Sciences), 46(1): 14-21(in Chinese with English abstract).
      Dong, M., 2012. Middle Jurassic Plants from Shaerhu Coal Field of Xinjiang, China (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      Du, Y.X., Karádi, V., Roghi G., et al, 2021a. Revision of the Conodont Mockina slovakensis and Its Paleogeographic Implications for the Upper Triassic Intraplatform Basins of the Alps. Journal of Earth Science, 32(3): 657-666. https://doi.org/10.1007/s12583-021-1411-5
      Du, Y.X., Onoue, T., Karádi, V., et al., 2021b. Evolutionary Process from Mockina bidentata to Parvigondolella andrusovi: Evidence from the Pizzo Mondello Section, Sicily, Italy. Journal of Earth Science, 32(3): 667-676. https://doi.org/10.1007/s12583-020-1362-2
      Farquhar, G., Richards, R., 1984. Isotopic Composition of Plant Carbon Correlates with Water-Use Efficiency of Wheat Genotypes. Functional Plant Biology, 11(6): 539. https://doi.org/10.1071/pp9840539 doi: 10.1071/PP9840539
      Farquhar, G., O'Leary, M., Berry, J., 1982. On the Relationship between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Functional Plant Biology, 9(2): 121. https://doi.org/10.1071/pp9820121 doi: 10.1071/PP9820121
      Florin, R., 1936. Die Fossilen Ginkgophyten von Franz-Joseph-Land nebst Errterung über Vermeintliche Cordaitales Mesozoischen Alters. I. Spezieller Teil. Palaeontographica, B. 81(3-6): 71-173.
      Heer, O., 1876. Beitrage zur Jura-Flora Ostsibiriens und des Amurlandes. Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg, 7(22): 1-122. doi: 10.1007/BF02261547
      Huang, T.D., Wang, P., Li, H., et al., 2011. The Analysis of Heterotopic Formation about Extremely-Thick Coal Seam in Shaerhu Coalfield. Xinjiang Geology, 29(3): 324-326(in Chinese with English abstract).
      Jiao, Y.Q., Wu, L.Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696(in Chinese with English abstract).
      Li, J., Yang, Q., Chen, H., et al., 2019. The Middle Jurassic Ginkgophyte Fossils from Huating, Gansu and Their Stomatal Parameters Responding to Paleoatmosphere CO2. Journal of Lanzhou University(Natural Sciences), 55(5): 561-570(in Chinese with English abstract).
      Li, J.L., Zhang, S.Q., Pu, Z.C., et al., 2013. Spatial-Temporal Variation and Annual Air Temperature in Xinjiang during 1961-2010. Arid Land Geography, 36(2): 228-237(in Chinese with English abstract).
      Li, R.Y., 2014. Fossil Liverworts form the Jurassic-Cretaceous of Xinjiang and Inner Mongolia and Paleoenvironment Reconstruction (Dissertation). Lanzhou University, Lanzhou(in Chinese with English abstract).
      McElwain, J. C., Beerling, D. J., Woodward, F. I., 1999. Fossil Plants and Global Warming at the Triassic-Jurassic Boundary. Science, 285(5432): 1386-1390. https://doi.org/10.1126/science.285.5432.1386
      McElwain, J. C., 1998. Do Fossil Plants Signal Palaeoatmospheric Carbon Dioxide Concentration in the Geological Past?. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 353(1365): 83-96. https://doi.org/10.1098/rstb.1998.0193
      McElwain, J.C., Chaloner, W.G., 1995. Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon Dioxide in the Palaeozoic. Annals of Botany, 76(4): 389-395. https://doi.org/10.1006/anbo.1995.1112
      Nie, F.J., Zhang, C.Y., Jiang, M.Z., et al., 2018. Relationship of Depositional Facies and Microfacies to Uranium Mineralization in Sandstone along the Southern Margin of Turpan-Hami Basin. Earth Science 43(10): 3584-3602(in Chinese with English abstract).
      Royer, D. L., Berner, R. A., Park, J., 2007. Climate Sensitivity Constrained by CO2 Concentrations over the Past 420 million Years. Nature, 446(7135): 530-532. https://doi.org/10.1038/nature05699
      Royer, D. L., 2001. Stomatal Density and Stomatal Index as Indicators of Paleoatmospheric CO2 Concentration. Review of Palaeobotany and Palynology, 114(1/2): 1-28. https://doi.org/10.1016/s0034-6667(0)00074-9
      Royer, D. L., Wing, S. L., Beerling, D. J., et al., 2001. Paleobotanical Evidence for near Present-Day Levels of Atmospheric CO2 during Part of the Tertiary. Science, 292(5525): 2310-2313. https://doi.org/10.1126/science.292.5525.2310
      Sun, B., Dilcher, D. L., Beerling, D. J., et al., 2003. Variation in Ginkgo Biloba L. Leaf Characters Across a Climatic Gradient in China. Proceedings of the National Academy of Sciences, 100(12): 7141-7146. https://doi.org/10.1073/pnas.1232419100
      Sun, G., 1987. Cuticles of Phoenicopsis from NE China with Discussion on Its Taxonomy. Acta Palaeontologica Sinica, 1987(6): 662-681+688+767-770.
      Wang, G.C., Xu, X.H., Chen, C., et al., 2020. Basin-Range Coupling and Tectonic Topography Analysis during Geological Mapping on Covered Area: A Case Study of Turpan-Hami Basin, Eastern Tianshan. Earth Science, 45(12): 4313-4331(in Chinese with English abstract).
      Wang, Q.J., Xu, X.H., Jin, P.H., et al., 2013. Quantitative Reconstruction of Mesozoic Paleoatmosphere CO2 Based on Stomatal Parameters of Fossil Baiera furcata of Ginkgophytes. Geological Review, 59(6): 1035-1045(in Chinese with English abstract).
      Wang, Y. D., Huang, C. M., Sun, B. N., et al., 2014. Paleo-CO2 Variation Trends and the Cretaceous Greenhouse Climate. Earth-Science Reviews, 129(3): 136-147. https://doi.org/10.1016/j.earscirev.2013.11.001
      Woodward, F. I., 1986. Ecophysiological Studies on the Shrub Vaccinium Myrtillus L. Taken from a Wide Altitudinal Range. Oecologia, 70(4): 580-586. https://doi.org/10.1007/bf00379908 doi: 10.1007/BF00379908
      Woodward, F. I., 1987. Stomatal Numbers are Sensitive to Increases in CO2 from Pre-Industrial Levels. Nature, 327(6123): 617-618. https://doi.org/10.1038/327617a0
      Xiao, L., Li, Y., Zhou, J. R., et al., 2014. Paleoatmospheric CO2 Level of the Middle Jurassic in Turpan-Hami Basin, Xinjiang. Journal of Lanzhou University(Natural Sciences), 50(2): 154-160(in Chinese with English abstract).
      Xiao, L., Qi, Y.L., Ma, W.Z., et al., 2017. Stable Carbon Isotope of Middle Jurassic Plant Fossils in the North Edge of Turpan-Hami Basin, Xinjiang and Their Palaeoenvironmental Implications. Acta Sedimentologica Sinica, 35(3): 489-498(in Chinese with English abstract).
      Xie, S.P., Yan, D.F., Wei, L.J., et al., 2005. A Stomatal Approach for Accurate Reconstruction of Palaeoatmosphere CO2 Concentration. Acta Palaeontologica Sinica, 44(3): 464-471(in Chinese with English abstract).
      Yan, D.F., Sun, B.N., 2004. The Discovery of Solenites Murrayana L. et H. in Yaojie Coal Field, Gansu and its Geological Significance. Journal of Lanzhou University(Natural Sciences), 4(3): 84-88(in Chinese with English abstract).
      陈建平, 黄第藩, 李晋超, 等, 1999. 吐哈盆地侏罗纪煤系油气主力源岩探讨. 地质学报, (2): 140-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199902004.htm
      陈应权, 马利涛, 彭琳, 等, 2017. 甘肃宝积山盆地中侏罗世阿干镇似银杏(Ginkgoites aganzhenensis Yang)的古环境意义. 沉积学报, 35(1): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701006.htm
      丁素婷, 孙柏年, 吴靖宇, 等, 2010. 甘肃华亭侏罗系PhoenicopsisPhoenicopsisangustifolia Heer的表皮构造与碳同位素特征. 兰州大学学报(自然科学版), 46(1): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201001005.htm
      董曼, 2012. 新疆沙尔湖煤田中侏罗世植物化石(博士学位论文). 长春: 吉林大学.
      黄铁栋, 王平, 李慧, 等, 2011. 沙尔湖煤田巨厚煤层异地成煤分析. 新疆地质, 29(3): 324-326. doi: 10.3969/j.issn.1000-8845.2011.03.015
      焦养泉, 吴立群, 荣辉, 等. 2021. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202108001.htm
      李景林, 张山清, 普宗朝, 等. 2013. 近50a新疆气温精细化时空变化分析. 干旱区地理, 36(2): 228-237. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201302005.htm
      李军, 杨倩, 陈慧, 等, 2019. 甘肃华亭中侏罗世银杏类化石及其气孔参数对古大气CO2的响应. 兰州大学学报(自然科学版), 55(5): 561-570. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201905003.htm
      李瑞云, 2014. 新疆内蒙古侏罗-白垩纪苔类植物及古环境重建(博士学位论文). 兰州: 兰州大学.
      聂逢君, 张成勇, 姜美珠, 等, 2018. 吐哈盆地西南缘地区砂岩型铀矿含矿目的层沉积相与铀矿化. 地球科学, 43(10): 3584-3602. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810020.htm
      孙革, 1987. 东北、内蒙古几种拟刺葵(Phoenicopsis)及其分类. 古生物学报, (6): 662-681+688+767-770. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198706002.htm
      王国灿, 申添毅, 陈超, 等, 2020. 覆盖区地质调查中的盆山构造地貌关系研究: 以东天山-吐哈盆地为例. 地球科学, 45(12): 4313-4331. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012004.htm
      王秋军, 徐小慧, 金培红, 等, 2013. 基于银杏类化石Baiera furcata气孔参数定量重建中生代古大气CO2浓度变化. 地质论评, 59(6): 1035-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306004.htm
      肖良, 李勇, 周建仁, 等, 2014. 新疆吐哈盆地中侏罗世古大气CO2重建. 兰州大学学报(自然科学版), 50(2): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201402003.htm
      肖良, 漆亚玲, 马文忠, 等, 2017. 吐哈盆地北缘中侏罗世植物化石稳定碳同位素的古环境意义. 沉积学报, 35(3): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703007.htm
      解三平, 阎德飞, 韦利杰, 等, 2005. 精确重建古大气CO2浓度的气孔方法. 古生物学报, 44(3): 464-471 doi: 10.3969/j.issn.0001-6616.2005.03.010
      阎德飞, 孙柏年, 2004. Solenites murrayana L. et H. 在甘肃窑街煤田的发现及其地质意义. 兰州大学学报, 4(3): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200403018.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (1370) PDF downloads(57) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return