• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 6
    Jun.  2022
    Turn off MathJax
    Article Contents
    Li Yao, Cui Yifei, Li Zhenhong, Fu Xudong, 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194
    Citation: Li Yao, Cui Yifei, Li Zhenhong, Fu Xudong, 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194

    Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor

    doi: 10.3799/dqkx.2021.194
    • Received Date: 2021-09-29
    • Publish Date: 2022-06-25
    • The Sichuan-Tibet traffic corridor is an important transportation strategy in China that plays a key role in the economic prosperity, long-term stability, and the "Belt and Road" strategy in western China. However, the complex terrain, climate environment and active geological tectonic movements along the Sichuan-Tibet traffic corridor lead to extremely developed geo-hazards, such as debris flows, landslides, glacial lake outbreak floods (GLOF), which have serious impacts on railway construction and operation. As a representative section, the Linzhi-Bomi is frequently affected by glacier debris flows, and deemed as the most difficult section for disaster mitigation. Although some conclusions about influencing factors and material properties of glacial debris flows have been achieved at the single-valley scale, there is lacking solid research on predisposing factors, evolution laws and catastrophe indicators of different types of glacial debris flows along the Sichuan-Tibet traffic corridor, making it impossible to build an effective monitoring and early warning system. In this paper, multi-source long-term remote sensing images and meteorological monitoring data, combined with field data, are applied to conduct an inductive analysis of the glacial debris flow along the Sichuan-Tibet traffic corridor. Four conclusions can be drawn. (1) 99 glacial debris flow valleys were identified in the study area, that mainly distributed in the Chaqing glacier-Yigong township, Jialabelei-Nangabawa peak, and Guxiang gully-Galongsi glacier. (2) Climate environment change has led to complex responses in glacier activities, characterised by increased activity of smaller glaciers (high-altitude hanging glaciers) and weakened activity of glaciers in large valleys in the past 40 years; (3) Based on the historic inventory, it can be found that the glacial debris flow has shown the characteristics of increasing frequency and scale since 1973. And (4) the frequency of the debris flows induced by landslides and ice-rock avalanches in steep terrain has increased. In the future, the continuous retreat of glaciers will promote the disappearance of ice waterfalls and the development of larger-scale hanging glaciers, which will increase the risk of glacial debris flows. The evolution process of glacial debris flows has obvious catastrophic indicators, such as: the increasing crevice density, the change in glacier velocities, and the rapid increase of glacial lake areas. Finally, it proposes a monitoring and early warning framework that contains satellites, aerial remote sensing platforms, meteorological and hydrological ground monitoring platforms, and ground motion monitoring platforms, which can provide catastrophic information for different types of glacial debris flows.

       

    • loading
    • Azam, M. F., Ramanathan, A., Wagnon, P., et al., 2016. Meteorological Conditions, Seasonal and Annual Mass Balances of Chhota Shigri Glacier, Western Himalaya, India. Annals of Glaciology, 57(71): 328-338. https://doi.org/10.3189/2016aog71a570
      Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432.
      Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639 (in Chinese with English abstract).
      Cheng, Z. L., Liu, J. J., Liu, J. K., 2010. Debris Flow Induced by Glacial Lake Break in Southeast Tibet. WIT Transactions on Engineering Sciences, 67: 101-111. https://doi.org/10.2495/deb100091
      Cui, P., Dang, C., Cheng, Z. L., et al., 2010. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Physical Geography, 31(6): 508-527. https://doi.org/10.2747/0272-3646.31.6.508
      Dai, K. R., Li, Z. H., Xu, Q., et al., 2020. Entering the Era of Earth Observation-Based Landslide Warning Systems: A Novel and Exciting Framework. IEEE Geoscience and Remote Sensing Magazine, 8(1): 136-153. https://doi.org/10.1109/mgrs.2019.2954395
      Fugazza, D., Scaioni, M., Corti, M., et al., 2018. Combination of UAV and Terrestrial Photogrammetry to Assess Rapid Glacier Evolution and Map Glacier Hazards. Natural Hazards and Earth System Sciences, 18(4): 1055-1071. https://doi.org/10.5194/nhess-18-1055-2018.
      Gao, B., Zhang, J. J., Wang, J. C., et al., 2019. Formation Mechanism and Disaster Characteristics of Debris Flow in the Tianmo Gully in Tibet. Hydrogeology & Engineering Geology, 46(5): 144-153(in Chinese with English abstract).
      Gao, Z. M., Ding, M. T., Yang, G. H., et al., 2021. Hazard Assessment of Debris Flow along Zire-Bomi Section of Sichuan-Tibet Railway. Journal of Engineering Geology, 29(2): 478-485 (in Chinese with English abstract).
      Hu, G. S., Chen, N. S., Deng, M. F., et al., 2011. Classification and Initiation Conditions of Debris Flows in Linzhi Area, Tibet. Bulletin of Soil and Water Conservation, 31(2): 193-197, 221(in Chinese with English abstract).
      Hu, J., Li, Z. W., Ding, X. L., et al., 2014. Resolving Three-Dimensional Surface Displacements from InSAR Measurements: A Review. Earth-Science Reviews, 133: 1-17. https://doi.org/10.1016/j.earscirev.2014.02.005
      Immerzeel, W. W., Kraaijenbrink, P. D. A., Shea, J. M., et al., 2014. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles. Remote Sensing of Environment, 150: 93-103. https://doi.org/10.1016/j.rse.2014.04.025
      Janke, J. R., 2013. Using Airborne LiDAR and USGS DEM Data for Assessing Rock Glaciers and Glaciers. Geomorphology, 195: 118-130. https://doi.org/10.1016/j.geomorph.2013.04.036
      Jia, Y., Cui, P., 2020. The Extreme Climate Background for Glacial Lakes Outburst Flood Events in Tibet. Climate Change Research, 16(4): 395-404(in Chinese with English abstract).
      Jiang, R. C., Zhang, L. M., Peng, D. L., et al., 2021. The Landslide Hazard Chain in the Tapovan of the Himalayas on 7 February 2021. Geophysical Research Letters, 48(17): e2021GL093723. https://doi.org/10.1029/2021gl093723.
      Kääb, A., Jacquemart, M., Gilbert, A., et al., 2021. Sudden Large-Volume Detachments of Low-Angle Mountain Glaciers-More Frequent than Thought? The Cryosphere, 15(4): 1751-1785. https://doi.org/10.5194/tc-15-1751-2021
      Kääb, A., Leinss, S., Gilbert, A., et al., 2018. Massive Collapse of Two Glaciers in Western Tibet in 2016 after Surge-Like Instability. Nature Geoscience, 11(2): 114-120. https://doi.org/10.1038/s41561-017-0039-7
      Lan, H. X., Zhang, N., Li, L. P., et al., 2021. Risk Analysis of Major Engineering Geological Hazards for Sichuan-Tibet Railway in the Phase of Feasibility Study. Journal of Engineering Geology, 29(2): 326-341 (in Chinese with English abstract).
      Legg, N. T., Meigs, A. J., Grant, G. E., et al., 2014. Debris Flow Initiation in Proglacial Gullies on Mount Rainier, Washington. Geomorphology, 226: 249-260. https://doi.org/10.1016/j.geomorph.2014.08.003.
      Leggat, M. S., Owens, P. N., Stott, T. A., et al., 2015. Hydro-Meteorological Drivers and Sources of Suspended Sediment Flux in the Pro-Glacial Zone of the Retreating Castle Creek Glacier, Cariboo Mountains, British Columbia, Canada. Earth Surface Processes and Landforms, 40(11): 1542-1559. https://doi.org/10.1002/esp.3755
      Liu, C. Z., Lü, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234 (in Chinese with English abstract).
      Liu, J. K., Zhang, J. J., Gao, B., et al., 2019. An Overview of Glacial Lake Outburst Flood in Tibet, China. Journal of Glaciology and Geocryology, 41(6): 1335-1347 (in Chinese with English abstract).
      Lu, J. Y., Yu, G. A., Huang, H. Q., 2021. Research and Prospect on Formation Mechanism of Debris Flows in High Mountains under the Influence of Climate Change. Journal of Glaciology and Geocryology, 43(2): 555-567 (in Chinese with English abstract).
      Ni, H. Y., Lü, X. J., Yanf, D. W., 2005. Fractal Feature and Geological Significance of Accumulations at Peilong Section along Sichuan⁃Tibet Highway. Journal of Engineering Geology, 13(4): 451-454(in Chinese with English abstract).
      Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304 (in Chinese with English abstract).
      Papadopoulos, G. A., Plessa, A., 2000. Magnitude-Distance Relations for Earthquake-Induced Landslides in Greece. Engineering Geology, 58(3-4): 377-386. https://doi.org/10.1016/s0013-7952(00)00043-0
      Qu, Y. P., Tang, C., Liu, Y., et al., 2015a. Investigation and Analysis of Glacier Debris Flow in Nyingchi Area, Tibet. Chinese Journal of Rock Mechanics and Engineering, 34(Suppl. 2): 4013-4022 (in Chinese with English abstract).
      Qu, Y. P., Zhu, J., Bu, X. H., et al., 2015b. Preliminary Starting Experiment Study of Glacial Rainfall Debris Flow, in Nyingchi, Tibet. Chinese Journal of Rock Mechanics and Engineering, 34(Suppl. 1): 3256-3266 (in Chinese with English abstract).
      Samsonov, S., Tiampo, K., Cassotto, R., 2021. SAR-Derived Flow Velocity and Its Link to Glacier Surface Elevation Change and Mass Balance. Remote Sensing of Environment, 258: 112343. https://doi.org/10.1016/j.rse.2021.112343
      Satyabala, S. P., 2016. Spatiotemporal Variations in Surface Velocity of the Gangotri Glacier, Garhwal Himalaya, India: Study Using Synthetic Aperture Radar Data. Remote Sensing of Environment, 181: 151-161. https://doi.org/10.1016/j.rse.2016.03.042
      Schneider, D., Bartelt, P., Caplan-Auerbach, J., et al., 2010. Insights into Rock-Ice Avalanche Dynamics by Combined Analysis of Seismic Recordings and a Numerical Avalanche Model. Journal of Geophysical Research: Earth Surface, 115(F4): F04026. https://doi.org/10.1029/2010jf001734
      Shugar, D., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): eabh4455. https://doi.org/10.1126/science.abh4455
      Tong, L. Q., Tu, J. N., Pei, L. X., et al., 2018. Preliminary Discussion of the Frequently Debris Flow Events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River. Journal of Engineering Geology, 26(6): 1552-1561 (in Chinese with English abstract).
      Walter, F., Amann, F., Kos, A., et al., 2020. Direct Observations of a Three Million Cubic Meter Rock-Slope Collapse with almost Immediate Initiation of Ensuing Debris Flows. Geomorphology, 351: 106933. https://doi.org/10.1016/j.geomorph.2019.106933.
      Wang, J., 2018. Influence of Morine on the Debris Flow in Parlung Tsangpo Basin (Dissertation). University of Chinese Academy of Sciences, Beijing(in Chinese with English abstract).
      Wang, Z., Hu, K. H., Ma, C., et al., 2021. Landscape Change in Response to Multiperiod Glacial Debris Flows in Peilong Catchment, Southeastern Tibet. Journal of Mountain Science, 18(3): 567-582. https://doi.org/10.1007/s11629-020-6172-6
      Wu, K. P., Liu, S. Y., Jiang, Z., et al., 2018. Remote-Sensing Estimate of Glacier Mass Balance over the Central Nyainqentanglha Range during 1968-2013. The Cryosphere Discussions. https://doi.org/10.5194/tc-2018-90
      Wu, K. P., Liu, S. Y., Zhu, Y., et al., 2021. High-Resolution Monitoring of Glacier Dynamics Based on Unmanned Aerial Vehicle Survey in the Meili Snow Mountain. Progress in Geography, 40(9): 1581-1589 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2021.09.012
      Xu, L. J., Hu, Z. Y., Zhao, Y. N., et al, 2019. Climate Change Characteristics in Qinghai-Tibetan Plateau during 1961-2010. Plateau Meteorology, 38(5): 911-919 (in Chinese with English abstract).
      Xu, Q., Dong, X. J., Li, W. L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966 (in Chinese with English abstract).
      Yao, T. D., Yao, Z. J., 2010. Impacts of Glacial Reretreat on Runoff on Tibetan Plateau. Chinese Journal of Nature, 32(1): 4-8 (in Chinese with English abstract).
      Zaginaev, V., Petrakov, D., Erokhin, S., et al., 2019. Geomorphic Control on Regional Glacier Lake Outburst Flood and Debris Flow Activity over Northern Tien Shan. Global and Planetary Change, 176: 50-59. https://doi.org/10.1016/j.gloplacha.2019.03.003
      Zhao, X., Zhang, H. T., Zhao, Z. F., et al., 2020. Study on the Genesis of Rainfall-Glacier Mixed Type Debris Flow of Haibalo Gully in Northwest Yunnan on July 28, 2019. Journal of Engineering Geology, 28(6): 1339-1349 (in Chinese with English abstract).
      Zheng, G. X., Mergili, M., Emmer, A., et al., 2021. The 2020 Glacial Lake Outburst Flood at Jinwuco, Tibet: Causes, Impacts, and Implications for Hazard and Risk Assessment. The Cryosphere, 15(7): 1-28.
      柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294
      高波, 张佳佳, 王军朝, 等, 2019. 西藏天摩沟泥石流形成机制与成灾特征. 水文地质工程地质, 46(5): 144-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201905020.htm
      高泽民, 丁明涛, 杨国辉, 等, 2021. 川藏交通廊道孜热-波密段泥石流灾害危险性评价. 工程地质学报, 29(2): 478-485.
      胡桂胜, 陈宁生, 邓明枫, 等, 2011. 西藏林芝地区泥石流类型及形成条件分析. 水土保持通报, 31(2): 193-197, 221. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201102040.htm
      贾洋, 崔鹏, 2020. 西藏冰湖溃决灾害事件极端气候特征. 气候变化研究进展, 16(4): 395-404. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202004001.htm
      兰恒星, 张宁, 李郎平, 等, 2021. 川藏交通廊道可研阶段重大工程地质风险分析. 工程地质学报, 29(2): 326-341.
      刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
      刘建康, 张佳佳, 高波, 等, 2019. 我国西藏地区冰湖溃决灾害综述. 冰川冻土, 41(6): 1335-1347. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201906006.htm
      鲁建莹, 余国安, 黄河清, 2021. 气候变化影响下高山区泥石流形成机制研究及展望. 冰川冻土, 43(2): 555-567. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202102020.htm
      倪化勇, 吕学军, 杨德伟, 2005. 川藏公路培龙沟路段堆积物的分形特征及其地质意义. 工程地质学报, 13(4): 451-454. doi: 10.3969/j.issn.1004-9665.2005.04.004
      潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏交通廊道工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070
      屈永平, 唐川, 刘洋, 等, 2015a. 西藏林芝地区冰川降雨型泥石流调查分析. 岩石力学与工程学报, 34(增刊2): 4013-4022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2047.htm
      屈永平, 朱静, 卜祥航, 等, 2015b. 西藏林芝地区冰川降雨型泥石流起动实验初步研究. 岩石力学与工程学报, 34(增刊1): 3256-3266. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1081.htm
      童立强, 涂杰楠, 裴丽鑫, 等, 2018. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨. 工程地质学报, 26(6): 1552-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806017.htm
      王姣, 2018. 帕隆藏布流域冰碛物对泥石流活动影响(博士学位论文). 北京: 中国科学院大学.
      吴坤鹏, 刘时银, 朱钰, 等, 2021. 基于无人机摄影测量的梅里雪山明永冰川末端表面高程动态监测. 地理科学进展, 40(9): 1581-1589. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202109013.htm
      徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961-2010年青藏高原气候变化特征分析. 高原气象, 38(5): 911-919. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201905001.htm
      许强, 董秀军, 李为乐, 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报(信息科学版), 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm
      姚檀栋, 姚治君, 2010. 青藏高原冰川退缩对河水径流的影响. 自然杂志, 32(1): 4-8. doi: 10.3969/j.issn.0253-9608.2010.01.002
      赵鑫, 张海太, 赵志芳, 等, 2020. 滇西北海巴洛沟"7·28"降雨-冰川融水混合型泥石流成因研究. 工程地质学报, 28(6): 1339-1349. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006020.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (2090) PDF downloads(241) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return