Citation: | Shang Hao, Zhu Henghua, Li Shuang, Song Xiaomei, Xia Yu, Liu Hui, Yang Fan, 2023. A Geological Borehole Data Protection Based on Graph Neural Networks. Earth Science, 48(8): 3151-3161. doi: 10.3799/dqkx.2021.232 |
Ali-Ozkan, O., Ouda, A., 2019. Key-Based Reversible Data Masking for Business Intelligence Healthcare Analytics Platforms. 2019 International Symposium on Networks, Computers and Communications(ISNCC), 2019: 1-6.
|
Bojchevski, A., Günnemann, S., 2019. Adversarial Attacks on Node Embeddings via Graph Poisoning. ICML, 97: 695-704.
|
Borgs, C., Chayes, J., Cohn, H., et al., 2019. An Theory of Sparse Graph Convergence I: Limits, Sparse Random Graph Models, and Power Law Distributions. Transactions of the American Mathematical Society, 372(5): 3019-3062. https://doi.org/10.1090/tran/7543
|
Cai, H. Y., Zheng, V. W., Chang, K. C. C., 2018. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications. IEEE Transactions on Knowledge and Data Engineering, 30(9): 1616-1637. https://doi.org/10.1109/tkde.2018.2807452
|
Chen, J. Y., Lin, X., Shi, Z. Q., et al., 2020. Link Prediction Adversarial Attack Via Iterative Gradient Attack. IEEE Transactions on Computational Social Systems, 7(4): 1081-1094. https://doi.org/10.1109/tcss.2020.3004059
|
Cuzzocrea, A., Shahriar, H., 2017. Data Masking Techniques for NoSQL Database Security: A Systematic Review. 2017 IEEE International Conference on Big Data, 2017: 4467-4473.
|
Dai, H.J., Li, H., Tian, T., et al., 2018. Adversarial Attack on Graph Structured Data. ICML, 80: 1123-1132.
|
Eikmeier, N., Gleich, D.F., 2017. Revisiting Power-Law Distributions in Spectra of Real-World Networks. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017: 817-826.
|
Gagula, A.C., Santillan, J.R., 2020. Integrating Geographic Information System, Remote Sensing Data, Field Surveys, and Hydraulic Simulations in Irrigation System Evaluation. Proceedings of the 2020 IEEE REGION 10 CONFERENCE (TENCON), Osaka, 2020: 626-630.
|
Hui, Y.U., Wei, Z., Xinnian, M.A., 2017. A Reversible Decryption Model for Vector and Raster Integration Based on Trigonometric Function. Bulletin of Surveying and Mapping, (10): 89-94.
|
Jiang, D.H., Zhou, W., 2018. Decryption Model for Vector Geographic Data Based on Chebyshev Polynomials. Journal of Geomatics Science and Technology. 35(3): 321-325(in Chinese with English abstract).
|
Kipf, T.N., Welling, M., 2017. Semi-Supervised Classification with Graph Convolutional Networks. 5th International Conference on Learning Representations, 1-14.
|
Li, A. B., Zhu, A. X., 2019. Copyright Authentication of Digital Vector Maps Based on Spatial Autocorrelation Indices. Earth Science Informatics, 12(4): 629-639. https://doi.org/10.1007/s12145-019-00386-z
|
Li, Y. F., Jin, R., Luo, Y., 2019. Classifying Relations in Clinical Narratives Using Segment Graph Convolutional and Recurrent Neural Networks (Seg-GCRNs). Journal of the American Medical Informatics Association, 26(3): 262-268. https://doi.org/10.1093/jamia/ocy157
|
Li, H., Zhu, H.H., Hua, W.H., et al., 2020. Key Technologies and Methods for Vector Geographic Data Security Protection. Earth Science, 45(12): 4574-4588 (in Chinese with English abstract).
|
Liu, H., Zhao, B., Guo, J.B., et al., 2021. Survey on Adversarial Attacks Towards Deep Learning. Journal of Cryptologic Research, 8(2): 202-214(in Chinese with English abstract).
|
Ma, J.Q., Chang, B., Zhang, X., et al., 2020. CopulaGNN: Towards Integrating Representational and Correlational Roles of Graphs in Graph Neural Networks. International Conference on Learning Representations, 2020: 1-13.
|
Marti, R., Li, Z. C., Catry, T., et al., 2020. A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires. Remote Sensing, 12(6): 932. https://doi.org/10.3390/rs12060932
|
Peng, Y. W., Lan, H., Yue, M. L., et al., 2018. Multipurpose Watermarking for Vector Map Protection and Authentication. Multimedia Tools and Applications, 77(6): 7239-7259. https://doi.org/10.1007/s11042-017-4631-z
|
Pham, G.N., Ngo, S.T., Bui, A.N., et al., 2019. Vector Map Random Encryption Algorithm Based on Multi-Scale Simplification and Gaussian Distribution. Applied Sciences, 9(22): 4889. https://doi.org/10.3390/app 9224889 doi: 10.3390/app9224889
|
Qiu, Y. G., Duan, H. T., Sun, J. Y., et al., 2019. Rich-Information Reversible Watermarking Scheme of Vector Maps. Multimedia Tools and Applications, 78(17): 24955-24977. https://doi.org/10.1007/s11042-019-7681-6
|
Qiu, Y. G., Gu, H. H., Sun, J. Y., 2017. High-Payload Reversible Watermarking Scheme of Vector Maps. Multimedia Tools and Applications, 77(5): 6385-6403. https://doi.org/10.1007/s11042-017-4546-8
|
Ren, N., Zhu, C. Q., Tong, D. Y., et al., 2020. Commutative Encryption and Watermarking Algorithm Based on Feature Invariants for Secure Vector Map. IEEE Access, 8: 221481-221493. https://doi.org/10.1109/access.2020.3043450
|
Sun, Y., Wang, S., Tang, X., et al., 2020. Adversarial Attacks on Graph Neural Networks via Node Injections: A Hierarchical Reinforcement Learning Approach. WWW '20: The Web Conference 2020, 2020: 673-683.
|
Van, B.N., Lee, S.H., Kwon, K.R., 2017. Selective Encryption Algorithm Using Hybrid Transform for GIS Vector Map. Journal of Information Processing Systems, 13(1): 68-82. https://doi.org/10.3745/jips.03.0059
|
Vybornova, Y., Vladislav, S., 2019. Method for Vector Map Protection Based on Using of a Watermark Image as a Secondary Carrier. Proceedings of the ICETE (2). Prague, Czech Republic, 2019: 284-293.
|
Wang, X.D., Liu, Z., Wang, N.N., et al., 2020. Relational Metric Learning with Dual Graph Attention Networks for Social Recommendation. PAKDD (1) 2020: 104-117.
|
Xia, D., Ge, Y.F., Tang, H.M., et al., 2020. Segmentation of Region of Interest and Identification of Rock Discontinuities in Digital Borehole Images. Earth Science, 45(11): 4207-4217(in Chinese with English abstract).
|
Zhai, M.G., Yang, S.F., Chen, N.H., et al., 2018. Big Data Epoch: Challenges and Opportunities for Geology. Bulletin of Chinese Academy of Sciences, 33(8): 825-831(in Chinese with English abstract).
|
Zhu, D.Y., Zhang, Z.W., Cui, P., et al., 2019. Robust Graph Convolutional Networks Against Adversarial Attacks. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 1399-1407.
|
Zügner, D., Akbarnejad, A., Günnemann, S., 2018. Adversarial Attacks on Neural Networks for Graph Data. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018: 2847-2856.
|
江栋华, 周卫, 2018. 一种基于Chebyshev多项式的矢量数据几何精度脱密模型. 测绘科学技术学报, 35(3): 321-325. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201803019.htm
|
李虎, 朱恒华, 花卫华, 等, 2020. 矢量地理数据安全保护关键技术和方法. 地球科学, 45(12): 4574-4588. doi: 10.3799/dqkx.2020.299
|
刘会, 赵波, 郭嘉宝, 等, 2021. 针对深度学习的对抗攻击综述. 密码学报, 8(2): 202-214. https://www.cnki.com.cn/Article/CJFDTOTAL-MMXB202102002.htm
|
夏丁, 葛云峰, 唐辉明, 等, 2020. 数字钻孔图像兴趣区域分割与岩体结构面特征识别. 地球科学, 45(11): 4207-4217. doi: 10.3799/dqkx.2020.003
|
翟明国, 杨树锋, 陈宁华, 等, 2018. 大数据时代: 地质学的挑战与机遇. 中国科学院院刊, 33(8): 825-831. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201808012.htm
|